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Why practice?

Learning is about changing how you think. The most effective way to do that is to start by knowing how you think
now. So always begin solving a problem by writing out what you think the answer will be like. Yes!, make a guess! But
after that, do procede using the appropriate methods, and don’t skip steps. At the end, compare your result with your
initial guess. Are they different? If yes, how do they differ? Are they different by a few percent? Or are they completely
opposite?

That will be the place to pause and reflect on how you are thinking about these situations, and figure out what you
need to change in your thinking. I’m here to help with that step, but it will go much faster if you contribute towards
identifying where you need the help. Doing the exercises is the place where you work on that analysis.

When practicing problems spend the majority of your time being very explicit about the context, assumptions, and
methods that you will be using in your process – that is, write everything out. This does take time, but it practices
what is important: reasoning about the physics. You might not get as many problems done, but you will have done
them better and gained more.

So now, let’s get to work.

ii



Contents

0 Preparation 1

0.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.2 Areas & Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.4 Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.5 Masses & Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2.1 Components, Magnitudes & Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2.2 Sums of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2.3 Vectors that Sum to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.3.2 Solving Equations with Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Forces 9

1.1 Free-Body Diagrams: Forces in Static Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Gravity and Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 With an External Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Gravity and Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Indeterminate Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Solving problems using the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Mechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Biomechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Pulleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 A Single Pulley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Two Pulleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Three or more Pulleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.4 Multiple Ropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Torques 29

2.1 Torque : Qualitative Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Sign of Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Line of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Torque : Quantitative Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



2.2.1 Single applied Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Solving Problems using the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Solving for Forces using Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Biomechanical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Materials 47

3.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Energy 52

4.1 Thermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Thermal Energy and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Mechanical Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Power & Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Energy in Biological Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Metabolic Energy & Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Biomechanical Energy, Work & Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Waves 62

5.1 Periodic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Period & Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 The Fundamental Relationship for Periodic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Graphs of Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Intensity, Power, and Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Intensity, Energy, and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Sound Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.4 Sound Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Electricity 81

6.1 Electric Current, Voltage and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Current, Charge and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



6.1.2 Voltage, Charge and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.3 Electrical Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Electric Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Ohm’s Law & the Simple Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.2 Circuits with Resistors in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Circuits with Resistors in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Time-Varying Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Alternating Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

v



vi



Chapter 0

Preparation
0.1 Units
0.1.1 Lengths

EXR 0.1.01 1 m = 100 cm = 1 000 mm
EXR 0.1.02 1 cm = 0.01 m = 10 mm
EXR 0.1.03 3.205 m = 320.5 cm = 3 205 mm
EXR 0.1.04 0.829 m = 82.9 cm = 829 mm
EXR 0.1.05 7 cm = 0.07 m = 70 mm
EXR 0.1.06 237 cm = 2.37 m
EXR 0.1.07 15 mm = 1.5 cm = 0.015 m
EXR 0.1.08 29.45 cm = 294.5 mm = 0.2945 m

EXR 0.1.09 14 in = 35.56 cm
EXR 0.1.10 42 in = 3.5 ft = 1.067 m
EXR 0.1.11 88 in = 2.235 m
EXR 0.1.12 1 ft = 30.48 cm
EXR 0.1.13 5’6” = 5 ft 6 in = 1.68 m
EXR 0.1.14 25 cm = 9.8 in
EXR 0.1.15 1.00 m = 3 ft and 3.37 in
EXR 0.1.16 1.956 m = 6 ft and 5 in

0.1.2 Areas & Volumes

EXR 0.1.17 1 m2 = 10 000 cm2

EXR 0.1.18 400 cm2 = 0.0400 m2

EXR 0.1.19 0.0820 m2 = 820 cm2

EXR 0.1.20 37 cm2 = 3 700 mm2

EXR 0.1.21 1 in2 = 6.45 cm2 = 645 mm2

EXR 0.1.22 1 ft2 = 144 in2 = 929 cm2

EXR 0.1.23 200 ft2 = 18.58 m2

EXR 0.1.24 50 cm2 = 7.75 in2

EXR 0.1.25 7 L = 7 000 cm3 = 7 000 mL
EXR 0.1.26 375 mL = 0.375 L
EXR 0.1.27 0.520 L = 520 mL
EXR 0.1.28 1 m3 = 1 000 000 cm3 = 1 000 L
EXR 0.1.29 1 in3 = 16.39 cm3

EXR 0.1.30 1 ft3 = 28 317 cm3 = 28.3 L
EXR 0.1.31 10 L = 0.353 ft3

EXR 0.1.32 625 mL = 38.1 in3

0.1.3 Time

When working with measurements of time remember that (in this context) the non-standard symbols “d” for days, “h”
for hours, and “min” for minutes are used. These are not to be confused with the Metric prefixes “d” for “deci” (10−1),
and “h” for “hecto” (10+2). Be aware of the context.

For these conversions recall the definitions: 1d= 24h, 1h= 60min, and 1min= 60s.

EXR 0.1.33 90 s = 1.5 min
EXR 0.1.34 250 s = 4.17 min
EXR 0.1.35 1 000 s = 16.67 min
EXR 0.1.36 15 s = 0.25 min
EXR 0.1.37 10.0 min = 600 s = 0.167 h
EXR 0.1.38 411 min = 24.7×103 s = 6.85 h
EXR 0.1.39 900 min = 54.0×103 s = 15.0 h
EXR 0.1.40 1

5 min = 12 s = 1
300 h

EXR 0.1.41 0.20 h = 12 min = 8.3×10−3 d
EXR 0.1.42 1.5 h = 90 min = 0.063 d

EXR 0.1.43 8 h = 480 min = 1
3 d

EXR 0.1.44 30 h = 1 800 min = 1.25 d
EXR 0.1.45 100 h = 6 000 min = 4.17 d
EXR 0.1.46 888 h = 53.3×103 min = 37 d
EXR 0.1.47 1

10 d = 2.4 h = 144 min
EXR 0.1.48 1

3 d = 8 h = 480 min
EXR 0.1.49 7 d = 168 h = 0.6×106 s
EXR 0.1.50 30 d = 720 h = 2.6×106 s
EXR 0.1.51 365 d = 8 760 h = 31.5×106 s

0.1.4 Rates
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EXR 0.1.52 1 m/s = 60 m/min = 3 600 m/h
EXR 0.1.53 1.28 m/s = 77 m/min = 4 620 m/h
EXR 0.1.54 2.5 m/s = 150 m/min = 9 000 m/h
EXR 0.1.55 90 km/h = 25 m/s
EXR 0.1.56 100 km/h = 27.8 m/s
EXR 0.1.57 10 m/s = 36 km/h

EXR 0.1.58 343 m/s = 1 235 km/h
EXR 0.1.59 5.0 ft/s = 5.5 km/h
EXR 0.1.60 50 mL/s = 3.0 L/min
EXR 0.1.61 8.33 L/s = 0.500 m3/min
EXR 0.1.62 2 L/min = 33.3 mL/s
EXR 0.1.63 0.370 m3/min = 6.17 L/s

0.1.5 Masses & Forces

EXR 0.1.64 3.2 kg = 3 200 g
EXR 0.1.65 487 g = 0.487 kg
EXR 0.1.66 13 g = 0.013 kg
EXR 0.1.67 18 lb = 8.2 kg
EXR 0.1.68 145 lb = 65.8 kg

EXR 0.1.69 80 kg = 176 lb
EXR 0.1.70 72 kg weighs 706 N
EXR 0.1.71 8.56 kg weighs 84.0 N
EXR 0.1.72 150 lb weighs 667 N
EXR 0.1.73 169 lb weighs 750 N

0.2 Vectors

0.2.1 Components, Magnitudes & Angles

From Components to Magnitudes & Angles

For each of the vectors below find its components, then calculate its magnitude and the angle it makes with the +x-axis.
(The angle measured counter-clockwise is positive.) In these exercises the grid size is 1 cm.

EXR 0.2.01

x

y

EXR 0.2.02

x

y

EXR 0.2.03

x

y

EXR 0.2.04

x
y

EXR 0.2.05

x
y

EXR 0.2.06 Find the angle between this vector and
the +y-axis:

x

y

Angles Between Vectors

For each of the pairs of vectors below find the angle between them.
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EXR 0.2.07

x

y

A⃗

B⃗

EXR 0.2.08

x

y

A⃗

B⃗

EXR 0.2.09

x

y
A⃗

B⃗

EXR 0.2.10

x
y

A⃗

B⃗
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From Magnitudes & Angles to Components

For each of the vectors below find its components, then sketch it on the provided grid. (In these exercises the grid size
is 1 cm.)

EXR 0.2.11 Draw the vector of magnitude 6.403cm di-
rected 38.7◦ counter-clockwise from the +x-axis.

x

y

EXR 0.2.12 Draw the vector of magnitude 6.708cm di-
rected 63.4◦ counter-clockwise from the +x-axis.

x

y

EXR 0.2.13 Draw the vector of magnitude 6.403cm di-
rected 51.3◦ clockwise from the +x-axis.

x
y

0.2.2 Sums of Vectors

In this set of exercises we will practice the summation of vectors. In each exercise you will need to find the components
of the vectors involved. Be explicit and careful with the units of the quantities you are using and calculating.

Sum of Pairs of vectors

In the exercises below each vector is a position, and each grid square corresponds to one centimetre (1 cm) of distance.

For each of the pairs of vectors below calculate their sum. Find its components, its magnitude, and the angle it
makes with the +x-axis. (The give vectors can be called A⃗ and B⃗. Call the sum C⃗ = A⃗+ B⃗.)

EXR 0.2.14

x

y
A⃗

B⃗

EXR 0.2.15

x

y

A⃗ B⃗

EXR 0.2.16

x

y

A⃗B⃗
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EXR 0.2.17

x

y

A⃗

B⃗

EXR 0.2.18

x

y
A⃗

B⃗

EXR 0.2.19

x

y
A⃗

B⃗

Comparing Sums

In the exercises below each vector is a force, and each grid square corresponds to one newton (1 N) of force. For the sets
of vectors below find the pair of vectors whose sum (the resultant) has the greatest magnitude.

EXR 0.2.20

x

y
A⃗

x

y

B⃗

x

y

C⃗

EXR 0.2.21

x

y
A⃗

x

y
B⃗

x

y

C⃗
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0.2.3 Vectors that Sum to Zero

In the exercises below each vector is a force, and each grid square corresponds to one newton (1 N) of force. For the
sets of vectors below find the missing vector that would make their sum equal 0⃗N. (Remember that the vector 0⃗N is
the vector whose components are each 0 N.) In the case of two vectors being given (which we can call A⃗ and B⃗) find the
third vector C⃗ such that A⃗+ B⃗+ C⃗ = 0⃗N.

EXR 0.2.22

x

y

A⃗

B⃗

EXR 0.2.23

x

y

A⃗
B⃗

EXR 0.2.24

x

y

A⃗

B⃗
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EXR 0.2.25

x

y

A⃗
B⃗

EXR 0.2.26

x

y

A⃗

B⃗

EXR 0.2.27

x

y

A⃗

B⃗

0.3 Logarithms

The square-root function tells you “if x =py, then y= x2.” In a similar way the logarithm function tells you “if x = log(y),
then y = 10x.” The logarithm (or just “log” for short) has some algebraic properties. You know that for the square-rootp

a×b =p
a×p

b. For the log there are the rules log(a×b)= log(a)+log(b) and log(cn)= n×log(c). The exercises in this
section practice these properties.

0.3.1 Basics

EXR 0.3.01 log(100) = 2
EXR 0.3.02 log(1000) = 3
EXR 0.3.03 log(500) = 2.70
EXR 0.3.04 log(50) = 1.70
EXR 0.3.05 log(5) = 0.7
EXR 0.3.06 log(1000000) = 6
EXR 0.3.07 log(10000000) = 7
EXR 0.3.08 log(3000000) = 6.477
EXR 0.3.09 log(9.900×105) = 5.996
EXR 0.3.10 log(100×1000) = 5
EXR 0.3.11 log(100)+ log(1000) = 5
EXR 0.3.12 log(15) = 1.176
EXR 0.3.13 log(3)+ log(5) = 1.176
EXR 0.3.14 log(1000

/
10) = 2

EXR 0.3.15 log(1000)− log(10) = 2

EXR 0.3.16 log(15) = 1.176
EXR 0.3.17 log(30)− log(2) = 1.176
EXR 0.3.18 log(7

/
3) = 0.368

EXR 0.3.19 log(7)− log(3) = 0.368
EXR 0.3.20 log(3

/
7) = −0.368

EXR 0.3.21 log(137
/

137) = 0
EXR 0.3.22 log( 1

100 ) = −2
EXR 0.3.23 log(5) = 0.7
EXR 0.3.24 log(25) = 1.4
EXR 0.3.25 2× log(5) = 1.4
EXR 0.3.26 log(2) = 0.3
EXR 0.3.27 log(8) = 0.9
EXR 0.3.28 3× log(2) = 0.9
EXR 0.3.29 log(

p
10) = 1/2

EXR 0.3.30 log(
√p

10) = 1/4
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0.3.2 Solving Equations with Logarithms

One last note: Since 10x > 0 for any value of x, there is no “±” when we use the logarithm to solve an equation. Also for
that reason expressions like log(−7) have no meaning (just like

p−7 is not a number).

EXR 0.3.31 If 10x = 103, then x =+3.
EXR 0.3.32 If 10x = 10−5, then x =−5.
EXR 0.3.33 If 10x = 107, then x =+7.
EXR 0.3.34 If 10x = 10−2, then x =−2.
EXR 0.3.35 If 10x = 103/4, then x =+3/4.
EXR 0.3.36 If 10x = 10−11/7, then x =−11/7.

EXR 0.3.37 If 10x = 10−37/81, then x =−37/81.
EXR 0.3.38 If 10x = 105/2, then x =+5/2.
EXR 0.3.39 If 10x = 102.957, then x =+2.957.
EXR 0.3.40 If 10x = 10

p
2, then x =+p2.

EXR 0.3.41 If 10x = 10−0.8251, then x =−0.8251.
EXR 0.3.42 If 10x = 10π, then x =π.

EXR 0.3.43 If log(x)=+4, then x = 10+4 = 10000.
EXR 0.3.44 If log(x)=+1, then x = 10+1 = 10.
EXR 0.3.45 If log(x)=−5, then x = 10−5 = 0.00001.
EXR 0.3.46 If log(x)=−2, then x = 10−2 = 0.01.
EXR 0.3.47 If log(x)=−3/2, then x = 10−3/2 = 0.031623.
EXR 0.3.48 If log(x) = 4/11, then x =
10+4/11 = 2.310130.

EXR 0.3.49 If log(x)= 1 1
7 , then x = 10+8/7 = 13.894955.

EXR 0.3.50 If log(x) = 2.718282, then x =
102.718282 = 522.736.
EXR 0.3.51 If log(x)=p

3, then x = 10
p

3 = 53.957374.
EXR 0.3.52 If log(x) = −π, then x =
10−π = 0.000721784.

Ch.0 Preparation 8 Exercises for PPT {α13} November 21, 2022



Chapter 1

Forces
1.1 Free-Body Diagrams: Forces in Static Equilibrium

In these exercises we will practice the construction and use of Free-Body Diagrams (FBDs) to reason about the forces
acting on objects in static equilibrium. For the purposes of practice we will limit ourselves to two-dimensional systems.
Unless explicitly stated each system is being viewed from the side so that gravity acts straight downwards on the
diagram.

In each exercise construct the Free-Body Diagram (FBD). A recommended first step is to make a list of the things
that the object is interacting with. Name those things, beginning with the Earth, and then name the other objects or
surfaces which the object is touching (like the floor) or is attached to (like a rope). Look carefully at the diagram (if
given), and read carefully any descriptive text of the situation (if given), during this step.

After constructing the FBD, check that the forces do sum to zero. This check is a qualitative diagram used to
confirm that equilibrium is possible. If it is not possible to sum the forces in your FBD by adjusting them, then return
to your list of interactions, and think more carefully about the situation. (There is no point to move past this step to
doing quantitative calculations if the required outcome is impossible!)

Remember to be clear about what aspect of each force is unknown. If there is a rope at a specified angle, then the
force of tension that it exerts on the object is along that fixed direction, and only its magnitude may be adjusted. If
there is a surface of contact, then the normal at that surface points perpendicular away from the surface, and only its
magnitude may be adjusted. Similarly, if there is friction, then it must be parallel to the surface, but its direction and
magnitude must both be determined.

Above all, do not hesitate to iterate. Producing the “correct” diagram immediately is not a healthy expectation to
hold. You are solving a problem and you must be open to exploring alternatives before arriving at a consistent answer.
Iteration is a key feature of problem-solving!
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1.1.1 Gravity and Tension

In these first few Free-Body Diagram (FBD) exercises the object is suspended against gravity by ropes. In each exercise,
draw the FBD, and use the sum of forces to qualitatively estimate the magnitudes of the tensions (relative to your choice
of the weight of the object).

EXERCISE 1.1.01

EXERCISE 1.1.02

EXERCISE 1.1.03

EXERCISE 1.1.04

EXERCISE 1.1.05

EXERCISE 1.1.06

EXERCISE 1.1.07

EXERCISE 1.1.08

EXERCISE 1.1.09

EXERCISE 1.1.10

EXERCISE 1.1.11

EXERCISE 1.1.12
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1.1.2 With an External Force

In these cases an external force P⃗ (a push or a pull) is being applied to an object suspended by ropes. In each of these
cases the applied force never causes the tension of any rope to become zero.

EXERCISE 1.1.13

EXERCISE 1.1.14

EXERCISE 1.1.15

EXERCISE 1.1.16

EXERCISE 1.1.17

EXERCISE 1.1.18

EXERCISE 1.1.19

EXERCISE 1.1.20

EXERCISE 1.1.21

EXERCISE 1.1.22

EXERCISE 1.1.23

EXERCISE 1.1.24

EXERCISE 1.1.25
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EXERCISE 1.1.26
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1.1.3 Gravity and Contact

In this section we will practice analyzing objects in contact with a surface. Friction is present between all surfaces of
contact. The exceptions of there being negligible friction will be noted as µ= 0.

Level Surfaces

In these situations the force of gravity and the normal will point opposite each other, but, because of other forces
present, they may not be of equal magnitude. Careful!

EXERCISE 1.1.27

EXERCISE 1.1.28

EXERCISE 1.1.29

EXERCISE 1.1.30

EXERCISE 1.1.31

EXERCISE 1.1.32

EXERCISE 1.1.33

EXERCISE 1.1.34 An object is attached to the surface by
a rope. There is tension in the rope.

T ̸= 0 N
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Inclined Surfaces

In these exercises friction remains strong enough to keep the object in equilibrium on the surface. The normal is still
(as always) perpendicular to the surface, but with the surface not horizontal the normal will not point opposite gravity,
and will almost certainly not have the same magnitude. Be very careful finding the normal!

EXERCISE 1.1.35

EXERCISE 1.1.36 The applied force is small in compari-
son to all other forces.

EXERCISE 1.1.37 The applied force is large, and the ob-
ject almost starts sliding UP the incline.

EXERCISE 1.1.38 The applied force is small in compari-
son to all other forces.

EXERCISE 1.1.39 The applied force is large, and the ob-
ject almost starts sliding UP the incline.

EXERCISE 1.1.40

µ= 0

EXERCISE 1.1.41

µ= 0

EXERCISE 1.1.42

µ= 0

EXERCISE 1.1.43

µ= 0

EXERCISE 1.1.44

EXERCISE 1.1.45
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EXERCISE 1.1.46

Cases of vertical and inverted surface

The theme to recognize in these exercises is that, with the surface vertical or even upside-down, the normal force can
not contribute to supporting the object’s weight, and may in fact be contributing a downwards component! Look to the
applied force(s) and friction (when present) to support the object against gravity.

EXERCISE 1.1.47 The applied force has a magnitude much larger than the block’s weight.

EXERCISE 1.1.48 The applied force has a magnitude smaller than the block’s weight.

EXERCISE 1.1.49 The applied force has a magnitude equal to the block’s weight.

EXERCISE 1.1.50 The applied force has a magnitude larger than the block’s weight.

EXERCISE 1.1.51 No friction between the block and surface.
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µ= 0

EXERCISE 1.1.52 The applied force has a magnitude much larger than the block’s weight.

EXERCISE 1.1.53 The applied force has a magnitude larger than the block’s weight.

EXERCISE 1.1.54 The applied force has a magnitude larger than the block’s weight.

EXERCISE 1.1.55 The applied force is vertically upwards, and has a magnitude larger than the block’s weight.

EXERCISE 1.1.56 The applied force is perpendicular into the surface, and has a magnitude larger than the block’s
weight.
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EXERCISE 1.1.57 The applied force is pointed slightly down the incline, and has a magnitude larger than the block’s
weight.

EXERCISE 1.1.58 The applied force is horizontal, and has a magnitude much larger than the block’s weight.

EXERCISE 1.1.59 The applied force has a magnitude larger than the block’s weight.
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1.1.4 Indeterminate Problems

It is possible for there to be more unknown forces than there are are equations. These cases are called indeterminate.
The possible solutions are subdivided into cases categorized by assumed values for one (or more) of the unknowns.

In these exercises there is friction between the ropes and any surfaces that they lay across. This means that, in
any cases where a segment of rope lays on a surface, the tension may vary along that length of the rope!

EXERCISE 1.1.60

Solve the system (above) for the three unknown tensions
in these cases:
(1) The tension in the horizontal rope is zero.
(2) The tension in the rope that points upwards to the right
is zero.
(3) The tension in the rope that points upwards to the left
equals the object’s weight mg.

EXERCISE 1.1.61

Solve the system (above) for the unknown tension in these
cases:
(1) The tension in the rope is very small, but not zero.
(2) The tension in the rope is a value that lets the friction
be zero.
(3) The tension in the rope equals the object’s weight mg.

EXERCISE 1.1.62

EXERCISE 1.1.63

EXERCISE 1.1.64

There is friction between the top of the block and rope.
This means that the value of the tension in the rope can
be different along its length where lays across the top of
the block! Consequently the tension of the segment on the
left (from the block to the surface) can be different from
the the tension of the segment on the right.

EXERCISE 1.1.65
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1.2 Solving problems using the Process

The Process

0. Identify the Object!

1. Identify the forces acting on the Object.

2. Draw the Free-Body Diagram.

3. Separately, for each force acting on the Object:

• draw the coordinates
• draw the force (vector)
• determine the components.

4. Use Newton’s 1st Law to write the equations to be solved.

5. Solve the equations for the unknown quantities.

Remember to take your time and to work carefully through Steps 0, 1 and 2 – that’s where you are doing the
physics! Working on these problems is not a race. If you rush through (or skip) those steps, then you will risk getting
it completely wrong. Working on these problems is where you should practice working methodically through each step
of the Process.

1.2.1 Mechanical systems

These Problems are all mechanical (not BIO-mechanical) in that there are no humans or factors of human anatomy
involved.

PROBLEM 1.2.01: On the force table a 250 gram mass is hanging at 72◦ and a 300 gram mass is hanging at 345◦.
What mass must we hang (and at what direction) to keep the ring at the center in static equilibrium? (The weight of
the ring may be ignored since it is much smaller than the tension in the strings will be.)

PROBLEM 1.2.02: An object of weight 3.70 N is hanging by two ropes, as shown. Find the magnitude of the tension in
each rope.

50◦

3.70 N
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PROBLEM 1.2.03: An object of weight 4.20 N is hanging from two ropes that are symmetric (as shown). Find the
magnitude of the tension in each rope.

30◦

4.20 N

PROBLEM 1.2.04: A spherical object of weight 11.50 N rests in a corner of a frictionless surface. Find the magnitude
of the normal exerted by each surface.

frictionless

11.50 N

25◦

PROBLEM 1.2.05: Two objects are hanging as shown. Find the magnitude of the tension in each rope.

2.00 N

3.00 N

PROBLEM 1.2.06: An object remains at rest on an incline when a force is applied as shown in the diagram. The mass
of the object is 2.70 kg and the magnitude of the applied pull is 1.37 N. What is the magnitude of the normal acting on
the object? What is the magnitude and direction of the static friction acting on the object?
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1.2.2 Biomechanical systems

These Problems are all biomechanical in that there are humans or factors of human anatomy involved.

PROBLEM 1.2.07: A student looking at their cellphone has their head bent over, as shown. The weight of their head is
50N, and the tension in the muscles attached to the base of their skull is 60 N. What force is exerted by the 1st cervical
vertebrae onto the base of their skull? (Specify magnitude and direction.)

PROBLEM 1.2.08: The tendon from the quadraceps muscle (thigh) passes over the patella (kneecap) to attach to the
tibia (shin bone). The tension in the tendon is 1333N. What are the magnitude and direction of the contact force
between the patella and the femur (thigh bone)? (There is essentially no friction between the patella and femur. The
mass of the patella is only a few grams, so gravity may be ignored relative to the tension in the tendon.)

PROBLEM 1.2.09: A person is doing a push-up. Choosing the right forearm (including the hand) as the Object, we want
to find the force acting at the elbow joint where the bones of the upper and lower arm meet. There is the contact force
n⃗ with the floor (magnitude 200.0 N) that acts vertically upwards. There is, of course, the weight F⃗G of the forearm
itself (86.8 N), acting vertically downwards. The tension T⃗ in the triceps muscle, attached to the ulna, exerts a force of
1826.6 N along a direction of 12◦ above the horizontal.

Find the magnitude and the direction of the force F⃗H exerted by the humerus bone (of the upper arm) onto the ulna
bone (of the forearm).
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PROBLEM 1.2.10: As I push a chair away from me (as shown below) what are the normal and friction forces at my feet
if I do not slide while pushing?

PROBLEM 1.2.11: An acrobat of weight 700 N is practicing a maneuver, suspending themselves from a vertical wall,
as shown in the picture. The rope suspending them makes an angle of 15◦ with the horizontal, and has a tension of
1160 N. What is the magnitude and direction of the friction exerted on the acrobat’s feet by the wall.
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1.3 Pulleys

A pulley is a machine that changes the direction of a rope but not the tension. The following exercises investigate the
mechanical consequences of that fact. The context, as always, is static equilibrium.

In each of the exercises below find the tension in each rope, when possible. Where asked, find the unknown
externally applied force (appearing as a red vector in the diagrams).

To solve for the tension trace along the rope and treat each pulley as if it was its own object. Each pulley being in
static equilibrium means that the sum of forces acting on each pulley must sum to zero, individually.

Pay very close attention to how the system of pulleys attaches to weights in the problem; you will quite often find
that the tension in the rope is only a fraction of the object’s weight.

1.3.1 A Single Pulley

EXR 1.3.01

12 N

EXR 1.3.02

45◦

12 N

EXR 1.3.03

28 N

EXR 1.3.04

28 N

EXR 1.3.05

60◦

28 N

EXR 1.3.06

28 N

EXR 1.3.07

60◦

28 N

EXR 1.3.08

12 N

EXR 1.3.09

60◦

8 N
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EXR 1.3.10

13 N

25◦

µ= 0

EXR 1.3.11

13 N

25◦

µ= 0

EXR 1.3.12

20 N

15◦
µ= 0

EXR 1.3.13

45◦

20 N

15◦
µ= 0

EXR 1.3.14

33
N

45◦

µ
= 0

1.3.2 Two Pulleys

EXR 1.3.15

30 N

EXR 1.3.16

30 N

EXR 1.3.17

18 N
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EXR 1.3.18

45◦

7 N

EXR 1.3.19

20 N

EXR 1.3.20

27 N

EXR 1.3.21

9 N

EXR 1.3.22 EXR 1.3.23

EXR 1.3.24 EXR 1.3.25 EXR 1.3.26
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1.3.3 Three or more Pulleys

EXR 1.3.27

96 N

EXR 1.3.28

75 N

1.3.4 Multiple Ropes

In each of these systems find the tension in each of the ropes.

EXR 1.3.29 EXR 1.3.30 EXR 1.3.31 EXR 1.3.32
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EXR 1.3.33 EXR 1.3.34 EXR 1.3.35
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Chapter 2

Torques
2.1 Torque : Qualitative Exercises

2.1.1 Sign of Torque

In each of the following exercises find the sign of the torque about the pivot produced by the single applied force. If
the applied force produces a torque of magnitude zero, say so. Remember that the sign of the torque is the sign of
the rotation that would happen if that torque was the only one being applied. (The sign of rotation follows the sign
convention of angles, with counter-clockwise being positive and clockwise being negative.)

EXR 2.1.01 EXR 2.1.02 EXR 2.1.03 EXR 2.1.04 EXR 2.1.05

EXR 2.1.06 EXR 2.1.07 EXR 2.1.08 EXR 2.1.09 EXR 2.1.10

EXR 2.1.11 EXR 2.1.12 EXR 2.1.13 EXR 2.1.14 EXR 2.1.15
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2.1.2 Line of Action

In the following exercises we use the line of action to reason qualitatively about the magnitude of torque. The context
is static equilibrium, in which

∑
τ⃗= 0⃗ N·m about any axis. With the object in the xy-plane (the page), the z-axis will be

through the chosen pivot (perpendicular to the page), and
∑
τz = 0 N·m about that axis.

In the cases where we are given a force, the exercise is to find the line of action along which it must act so that
the object remains in static equilibrium. In the cases where we are given a line of action, the exercise is to find
(qualitatively) the force that would, acting along that line, keep the object in static equilibrium.

Thin rectangular rod

In this first set of exercises the pivot will be located at the center of gravity of the object. Neither the force of gravity
nor the contact force of the pivot contribute a torque, so their magnitude and direction are unimportant. The forces do
still exist but, to simplify the diagrams, neither will be shown.

EXR 2.1.16

Where must
this force
act?

EXR 2.1.17

EXR 2.1.18

EXR 2.1.19

EXR 2.1.20

EXR 2.1.21

EXR 2.1.22

This force
has the same
magnitude.

EXR 2.1.23

This force
has the same
magnitude.
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EXR 2.1.24
What force must be placed on the dashed orange line
to maintain static equilibrium?

EXR 2.1.25

EXR 2.1.26

EXR 2.1.27

EXR 2.1.28

EXR 2.1.29

In this next set of exercises the pivot is not at the center of gravity of the object. This means that gravity will exert a
torque about the pivot on the object. (The force of gravity F⃗G is coloured dark brown in the diagrams.) The goal will be
to find or place the force that will maintain equilibrium.

EXR 2.1.30

pivot

F⃗G

EXR 2.1.31
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EXR 2.1.32

EXR 2.1.33

EXR 2.1.34

EXR 2.1.35

EXR 2.1.36
In this exercise gravity is present, but is so much
smaller than the other forces present that we omit
considering it.

EXR 2.1.37
In this exercise gravity is present, but is so much
smaller than the other forces present that we omit
considering it.

EXR 2.1.38
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Square and rectangular objects

EXR 2.1.39

EXR 2.1.40

EXR 2.1.41

EXR 2.1.42

EXR 2.1.43

EXR 2.1.44
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In this next set of exercises the pivot is not at the center of gravity of the object. This means that gravity will exert a
torque about the pivot on the object. (The force of gravity F⃗G is coloured dark brown in the diagrams.) The goal will be
to find or place the force that will maintain equilibrium.

EXR 2.1.45

F⃗G

EXR 2.1.46

F⃗G

EXR 2.1.47

EXR 2.1.48

F⃗G

EXR 2.1.49

F⃗G

EXR 2.1.50

F⃗G

Circular objects

EXR 2.1.51 EXR 2.1.52

Irregularly-shaped objects

▲FIX: TO BE WRITTEN
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2.2 Torque : Quantitative Exercises

2.2.1 Single applied Force

In each of these exercises determine:
(1) the angle θ from the direction of r⃗ to the direction of F⃗, and hence the sign of τz;
(2) the component F⊥ of the force that exerts a torque; and
(3) the z-component of the torque (τz) exerted about the pivot by the applied force.

Right Angles

EXR 2.2.01

2m

10N

90◦

EXR 2.2.02
2m

10N

90◦

EXR 2.2.03
4m

3N

90◦

EXR 2.2.04

5m

10N

90◦

EXR 2.2.05
6m

5N

90◦

EXR 2.2.06

8m

5N

90◦

EXR 2.2.07

6m 5N

90◦

EXR 2.2.08

5m7N

90◦

EXR 2.2.09

7m 4N

90◦
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EXR 2.2.10

3m

11N

90◦

EXR 2.2.11

4m

20N

90◦

EXR 2.2.12

4m

12N

90◦

EXR 2.2.13
5m

10N

90◦

EXR 2.2.14

6m

9N

90◦

Non-Right Angles

EXR 2.2.15

6m

5N

45◦

EXR 2.2.16

6m

5N

45◦

EXR 2.2.17

5m

12N60◦

EXR 2.2.18

7m

6N 30◦

EXR 2.2.19
6m

20N
37◦

EXR 2.2.20

5m

13N
130◦

EXR 2.2.21

5m

32N
70◦

General Cases

In these cases you must solve the geometry to find the angle θ from the direction of r⃗ towards the direction of F⃗. Recall
how to identify complementary angles, and rules like the transverse-parallel theorem. Be very careful to get the sign
of θ correct. These exercises may require a few steps to solve the geometry. Be sure to draw larger diagrams than
usual so that you can label the parts of the geometry clearly.
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EXERCISE 2.2.22

30◦

30◦

5m

17N

EXERCISE 2.2.23

60◦

20◦

6m

17N

EXERCISE 2.2.24 (Challenge)

45◦

20◦

4m

21N
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2.3 Solving Problems using the Process

The Process

0. Identify the Object!

1. Identify the forces acting on the Object.

2. Draw the Free-Body Diagram, clearly identifying the pivot.

3. Separately, for each force acting on the Object:

• draw the object and the coordinates
• draw the force, placing it on the object where it is acting
• draw the position vector r⃗ from the pivot to where the force is acting
• determine the components of the force, and the contribution to torque.

4. Use Newton’s 1st Law to write the equations to be solved.

5. Solve the equations for the unknown quantities.

2.3.1 Solving for Forces using Torque

A mechanical system is said to be in static equilibrium when the sum of forces is zero and the sum of torques is also
zero:

∑
Fx = 0 N (2.1)∑
Fy = 0 N (2.2)∑
τz = 0 N·m (2.3)

In the exercises below we will begin by practicing how to solve for forces quantitatively using the equilibrium of torques.
We will begin with simple geometric shapes, like squares, rectangles and circles. After that we will practice applying
the rules of static equilibrium to mechanical objects of various shapes. Follow the steps of The Process!

Rectangular Solids

In each of the exercises that follow determine:

(1) Find the magnitude of the applied force that keeps the box in equilibrium; and

(2) Find the magnitude and direction of the force acting at the pivot.

In all cases, unless otherwise indicated, the force of gravity acts at the geometric center of the object. The magnitude
of F⃗G is the value printed on the object.

EXERCISE 2.3.01

pivot

52 N

0.
40

m

1.20m

EXERCISE 2.3.02
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pivot

52 N
0.

40
m

1.20m

0.60m

EXERCISE 2.3.03

pivot

52 N

0.
40

m

1.20m

0.40m

EXERCISE 2.3.04

pivot

52 N

0.
40

m

1.20m

0.40m

EXERCISE 2.3.05

pivot

52 N

0.
40

m

1.20m

EXERCISE 2.3.06

pivot

52 N

0.
40

m

1.20m

0.30m

EXERCISE 2.3.07

pivot

52 N

0.
40

m

1.20m

45◦

EXERCISE 2.3.08
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pivot

52 N
0.

40
m

1.20m

45◦

EXERCISE 2.3.09

pivot

52 N

0.40m

1.20m

45◦

EXERCISE 2.3.10 (Challenge)

pivot

52 N

0.
40

m

1.20m

45◦

Rods, Ropes & Surfaces

In each of the following situations, solve for each of the unknown forces. Find the normal at each surface of contact.
In the cases when it is non-zero, find the magnitude and direction of friction. Find the tension in each rope that is
present.

A hint on how to start problems of this type: Chose a point of contact with a surface as the pivot, preferably one
where there is friction (when it is present). This will eliminate one (perhaps two!) unknowns from the torque equation,
simplifying the algebra.

EXERCISE 2.3.11

EXERCISE 2.3.12

EXERCISE 2.3.13
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EXERCISE 2.3.14

EXERCISE 2.3.15
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2.3.2 Biomechanical Equilibrium

In all the problems that follow, after finding the unknown force, find the force exerted at the pivot.

PROBLEM 2.3.01:

A person is holding a 7.20 kg mass in their hand. What total amount of force must the muscles of their upper arm
be exerting on their lower arm? The pivot in this situation is the elbow joint. The active muscles are the biceps and
brachialis, which are the large muscles on the front side of the upper arm. They attach to the forearm 4.5 cm from the
elbow joint, as shown in the diagram. The forearm (including the hand) has a mass of 1.80 kg, and has its center of
mass 15.0 cm from the elbow joint.

0cm 4.5cm 34cm

7.20kg

PROBLEM 2.3.02:

A person is pressing downwards with their hand, exerting 107 N on a surface (not shown). What total amount of force
must the muscles of their upper arm be exerting on their lower arm? (The active muscles are the cluster referred to as
the triceps, which are the muscles on the rear side of the upper arm.) The forearm (including the hand) has a mass of
1.8kg, and has its center of mass 15cm from the elbow joint.

0cm1.2cm 34cm

107N

PROBLEM 2.3.03:

A weightlifter is holding a weight above their head. Each arm supports 421N. The muscles of the shoulder collectively
exert a force along a line that is 20◦ above the axis of the bone of the upper arm (the humerus). What is the magnitude
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of that collective force? (We will neglect the mass of the arm itself in this.)

0cm 13cm 28cm

421N

PROBLEM 2.3.04:

A person is doing a pull-up. Each arm support half their mass (total mass 70kg). The pectorals and the muscles of the
back collectively exert a force along a line that is 40◦ to the left of the vertical. What is the magnitude of that collective
force? (We will neglect the mass of the arm itself in this.)

0cm 5.2cm

28cm

PROBLEM 2.3.05:

A person doing a push-up supports 180N at each hand. The pectoral muscle (the big muscle on the chest) attaches at
an angle of 30◦ to the axis of the bone of the upper arm (the humerus). What is the magnitude of the force exerted by
the pectoral? (We will neglect the mass of the arm in this.)

0cm5.0cm28cm

180N
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PROBLEM 2.3.06:

A person doing a push-up supports 142N at each shoulder joint. The triceps muscles (the muscles on the back of the
upper arm) attaches at an angle of 5◦ to the axis of the bone of the upper arm (the humerus). What is the magnitude
of the force exerted by the triceps? (We will neglect the mass of the arm in this.)

28cm21cm0cm

142N

PROBLEM 2.3.07:

A person is holding a rope (not shown). The reaction force to their pull is the 64N force on their hand, perpendicular
to their arm. The weight of their arm is 34N (center of mass 21cm from the shoulder). If their arm is 37◦ from the
vertical, what force must their pectoral (chest muscle) exert horizontally?

0cm

5cm

21cm

56cm

34N

64N

PROBLEM 2.3.08:

A person is lifting a 137N weight out to their side. The weight of their arm is 34N (center of mass 21cm from the
shoulder). If their arm is 37◦ from the vertical, what force must their deltoid (shoulder muscle) exert? (The deltoid
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attaches to the humerus 7.0cm from the shoulder joint at an angle of 22◦.)

0cm

7cm

21cm

56cm

34N

137N

PROBLEM 2.3.09:

A woman doing core exercises is in “plank position”, as shown in the diagram below. The joint where the spine meets
the pelvis is the pivot, with the legs on one side and the upper body on the other. It is the abdominal muscles that
keep the two segments from bending away from each other. The contact force at her feet is 230.0 N, and the mass of
the lower segment of her body is 30.61 kg. What is the tension in her abdominal muscles that keeps her body in static
equilibrium?

PROBLEM 2.3.10:

A person is standing vertically. Using their hamstrings (three muscles, of which the largest is the biceps femoris) they
are holding the lower portion of one of their legs (3.00kg) horizontal, as shown. The muscles are attached 4.50cm from
the pivot (the knee joint), and the center of mass of this segment is 15.3cm from the joint. What is the tension in the
hamstrings?

0cm4.50cm
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PROBLEM 2.3.11:

A vertical person is holding one of their legs horizontally, as shown. One of the major flexors, the iliopsoas, connects
the lesser trochanter (a small bump on the femur) to portions of the pelvis and the lumbar region of the spine. This
muscle exerts a net force pointed at 57◦ above the horizontal (as shown), acting 5.8 cm from the hip joint. The whole
leg has a mass of 10.40 kg, and the center of mass is 29.2 cm from the hip joint. What is the tension in the muscle?

0cm 5.8cm

PROBLEM 2.3.12:

A vertical person with one of their legs as shown, is holding their lower leg at an angle of 30◦ from the vertical. This
segment has a mass of 2.74 kg, with its center of mass 14.8 cm from the knee joint. The patellar ligament (the ligament
that connects the patella [kneecap] to the tibia [shinbone]) attaches to the tibia at a point 7.7 cm from the joint, and
the angle between the ligament and the tibia is 19◦. What is the tension in the ligament?

0cm

7.7cm
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Chapter 3

Materials
Remember that the symbol σ means “stress” (the way in which force is distributed across the cross-section of the object
σ = F

/
A) and that the symbol ϵ means “strain” (the relative change in length due to the applied stress ϵ = ∆L

/
Li).

Unless otherwise explicitly stated all the stresses are axial tension or axial compression.

In exercises involving circular geometry remember to find the radius in cases when the diameter is specified. When
the cross-section is hollow, obtain the area for the stress by subtracting the area of the hollow from the area of the
cross-section.

Since strain is the change in length divided by the original length (ϵ=∆L
/

L = (Lf −Li)
/

Li), the new length of the
deformed object is

Lf = Li +∆L (3.1)

Lf = Li +ϵLi (3.2)

Note also that since strain is a ratio of lengths, the units used do not matter, as long as they are the same.

In your calculations: be very careful with the units and powers of ten; keep at least four significant figures in your
intermediate steps; and round only the final result.

3.1 Stress
EXR 3.1.01 A 5.0 N force is applied across a rectangu-
lar surface measuring 2.0 cm by 7.0 cm. The stress is σ =
3.6 kPa.

EXR 3.1.02 A 1060 N force is applied across a rectan-
gular surface measuring 10 cm by 30 cm. The stress is σ
= 35 kPa.

EXR 3.1.03 A 120 kg mass is resting on a rectangular
surface measuring 8.0 cm by 27.0 cm. The pressure is P =
55 kPa.

EXR 3.1.04 A force of 33.7 N is shearing across a rect-
angular surface measuring 5.0 mm by 8.0 mm. The shear
stress is σ = 0.84 MPa.

EXR 3.1.05 A 7.16 kg mass is suspended at the end of a
horizontal metal rod that is square in cross-section (width
1.00 cm). The shear stress is σ = 0.702 MPa.

EXR 3.1.06 A cylindrical rod of diameter 5.00 cm is un-
der 12.0 N of compression. The stress is σ = 6.11 kPa.

EXR 3.1.07 A 621 kg mass hangs at the end of a
12.7 mm diameter metal rod. The stress is σ = 48.1 MPa.

EXR 3.1.08 A 7.00 kg mass hangs at the end of a cylin-
drical rod of diameter 6.0 mm. The stress is σ = 2.4 MPa.

EXR 3.1.09 A 7.16 kg mass is suspended at the end
of a horizontal metal rod that is circular in cross-section
(diameter 1.00 cm). The shear stress is σ = 0.89 MPa.

EXERCISE 3.1.10 A hollow square beam supports 12 507 N of weight. The outer width of the beam is 42.7 mm and
the inner width of the hollow is 40.1 mm. The stress in the material of the beam is σ = 58.1 MPa.

EXERCISE 3.1.11 A 18.755 kg bowling ball rests on the end of a hollow cylinder with outer radius 3.30 cm and inner
radius 3.20 cm. The stress in the material of the cylinder is σ = 0.901 MPa.

EXERCISE 3.1.12 A hollow metal tube with outer diameter 3.81 mm and inner diameter 3.77 mm is under a tension
of 522 N. The stress in the material of the tube is σ = 2.19 GPa.

EXERCISE 3.1.13 A 1406 kg car rests on its four tires, each with a contact patch measuring 19 cm by 24 cm. The
pressure on each tire is P = 76 kPa.
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EXR 3.1.14 A 54.4 kg ballerina stands on one foot (equivalent to a rectangle measuring 20.3 cm by 5.1 cm). The
pressure under her foot is P = 52 kPa.

EXR 3.1.15 A 54.4 kg ballerina stands on the point of her toes of one foot (equivalent to a rectangle measuring
6.0 cm by 2.0 cm). The pressure under her toes is P = 0.44 MPa.

EXR 3.1.16 An adult male moose can have masses up to 700 kg! Their femur is a hollow cylinder of bone, outer
diameter 5.5 cm, inner diameter 3.5 cm. The stress in the bone is σ = 1.2 MPa. (Assume that its weight is distributed
equally onto each of their four legs.)

3.2 Strain

While doing these exercises and problems remember:

• Strain is defined to be a ratio of lengths, so make sure that both quantities have the same units.
• Do not round any of the values you are using until you reach the final result. The change in length will be the

subtraction of two numbers that (typically) differ only in their last few decimal places; do not truncate any of
those.

• The sign of the change in length, and hence the sign of the strain, is very important. Double-check that it is
correct: ϵ > 0 means an increase in length, while ϵ < 0 means a decrease in length. In your answer be explicit
about the sign.

• With the exception of extremely soft elastic materials (like rubber) realistic strains should be very small numbers.
If you find a strain ϵ> 1, then you’ve probably made a mistake somewhere.

EXR 3.2.01 A meter stick (length 1.000 m) is subjected
to tension and stretches to 1.003 m. The strain is ϵ =
+3×10−3.

EXR 3.2.02 An elastic band is stretched from 8.5 cm to
14.2 cm. The strain is ϵ = +0.67.

EXR 3.2.03 An object of length 45.00 cm is subjected
to a stress and compresses to 44.92 cm. The strain is ϵ =
−2×10−3.

EXR 3.2.04 A steel ruler (length 12.02 in) is subjected to
tension and stretches to 12.03 in. The strain is ϵ = +0.08%.
(We are looking for the strain expressed as a percent.)

EXR 3.2.05 A wooden column of height 67.02 inches is
subjected to a stress and compresses to 66.97 inches. The
strain is ϵ = −7×10−4.

EXR 3.2.06 A ruler (original length 30.22 cm) is sub-
jected to tension and exhibits a strain of ϵ=+0.20%. The

deformed length is Lf = 30.28 cm.

EXR 3.2.07 A segment of a bridge (original length
27.052 m) is subjected to a stress and exhibits a strain of
ϵ=+3.5×10−5. The deformed length is Lf = 27.053 m.

EXR 3.2.08 A segment of a bridge (original length
27.052 m) is subjected to a stress and exhibits a strain of
ϵ=−3.5×10−5. The deformed length is Lf = 27.051 m.

EXR 3.2.09 When the ground under a building subsides
a concrete wall (original height 13.09 m) is subjected to a
stress and exhibits a strain of ϵ = +7.30×10−6. The de-
formed height is Lf = 13.09 m.

EXR 3.2.10 A person out on a nature hike takes a rest
on a granite boulder (original height 75.00 cm). The com-
pressive stress due to the person’s weight causes a strain
of ϵ=−5.28×10−8 in the boulder. The deformed height is
Lf = 75.00 cm.
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3.3 Stress-Strain Curves

In each of the stress-strain graphs of the following exercises a small orange circle around the end of a stress-strain
curve indicates the failure of the material.

EXERCISE 3.3.01 Consider the stress-strain curves plotted below.

(a) Calculate the Young’s Modulus for each of the materials. (Be careful with the units!)

(b) For those materials that have a failure in the plotted range of strains, estimate the stress and strain at failure. For
those graphs also estimate their values at the yield point (if it exists).

[1]

ϵ(10−3)

σ(kPa)

10

50
[2]

ϵ(10−3)

σ(kPa)

10

50
[3]

ϵ(10−3)

σ(kPa)

10

50

[4]

ϵ(10−6)

σ(kPa)

10

50
[5]

ϵ(10−3)

σ(MPa)

75

100
[6]

ϵ(10−3)

σ(kPa)

20

20

[7]

ϵ(10−6)

σ(Pa)

250

50
[8]

ϵ(%)

σ(MPa)

5

250
[9]

ϵ(10−3)

σ(kPa)

100

125

PROBLEM 3.3.01:

ϵ(10−3)

σ(kPa)

0 1 2 3 4 5
0

15

30

45

60

Given the stress-strain curve on the right:
(a) What is the Young’s modulus of the material?
(b) What is stress in the material
when the strain is ϵ= 3.5×10−3?
(c) What is strain in the material
when the stress is σ= 20 kPa?

PROBLEM 3.3.02:
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ϵ(10−3)

σ(MPa)

0 2 4 6 8 10 12
0

3

6

9

12

15

Given the stress-strain curve on the right:
(a) What is the strain at the yield point? If the object were 14.0 cm
in length when unstressed, what would be its length at this limit?
(b) What is the Young’s modulus of the material in the elastic
regime?
(c) What is stress in the material
when the strain is ϵ= 3.0×10−3?
(d) What is the strain at failure?

PROBLEM 3.3.03:

ϵ(%)

σ(Pa)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Given the stress-strain curve on the right:
(a) From the shape of the stress-strain curve,
what type of material is this?
(b) Estimate the strain of the material
when the stress is σ= 10 Pa.
(c) Estimate the value of Young’s modulus in the regime where the
stress-strain curve is linear.

PROBLEM 3.3.04:

ϵ(10−3)

σ(MPa)

−20 −10

10 20 30

−24

−20

−16

−12

−8

−4

4

8

12

16

The stress-strain curve above shows the behavior of the material both under compression and under tension. Given
that curve:

(a) Estimate the stress and strain at yield when the material is under tension.

(b) Estimate the stress and strain at yield when the material is under compression.

(c) Estimate the value of strain at which the stress has its largest magnitude. Is that when the material is under
tension or compression?

(d) Estimate the stress and strain when the material fails under tension.

(e) Estimate the value of Young’s modulus for values of strain between the compressive yield point and the tensile
yield point.
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Chapter 4

Energy
Introduction.

4.1 Thermal Energy

4.1.1 Units

EXR 4.1.01 What is the temperature 300. K measured in Celsius?

EXR 4.1.02 The SI system is based on the metre, kilogram, and second. In this system the unit of energy, the joule,
has units kg ·m2/s2. There is a related system of units: the CGS system, which is based on the centimetre, gram, and
second. In that system the unit of energy is the erg, which is 1erg= 1g ·cm2/s2. How many ergs are in one joule?

EXR 4.1.03 The density of Earth’s atmosphere (at 101.3 kPa and 15 ◦C) is approximately 1.225kg/m3. What is that
density measured in grams per litre?

4.1.2 Thermal Energy and Temperature

Energy Transferred

Category 1: Using ∆E = mC ∆T to find the thermal energy ∆E transferred.

EXR 4.1.04 How many kilojoules of thermal energy
must be added to increase the temperature of 3.00 L of
water by 2.00 C◦?

EXR 4.1.05 How many kilojoules of thermal energy
must be removed from 650 mL of water to decrease its
temperature by 16.00 C◦?

EXR 4.1.06 A warm bathtub (172 L) cools by 0.25 C◦:
how much thermal energy does it lose?

EXR 4.1.07 To make a cup of tea we raise 0.53 L by
81 C◦: how much thermal energy does this take, in kilo-
joules?

Temperature Change

Category 2: Using ∆E = mC ∆T to find the change ∆T = Tfinal −Tinitial in temperature.

EXR 4.1.08 By how much does the temperature of
3.00 L of water change if we transfer 50.2 kJ into it?

EXR 4.1.09 By how much does the temperature of
650 mL of water change if we transfer 54.4 kJ out of it?

EXR 4.1.10 By how much does the temperature of
3.00 L of water change if we transfer 753 kJ into it?

EXR 4.1.11 By how much does the temperature of
650 mL of water change if we transfer 109 kJ out of it?

Temperature, initial or final

Category 3: Using ∆E = mC ∆T to find either the initial temperature Tinitial, or the final temperature Tfinal from
∆T = Tfinal −Tinitial.
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EXR 4.1.12 We add 50.2 kJ of thermal energy to 3.00 L
of water that begins at +18 ◦C. What is its final tempera-
ture?

EXR 4.1.13 730 mL of hot water is allowed to cool. After
it has lost 125 kJ of thermal energy the water has cooled
to a temperature of +23.1 ◦C. How hot was it to begin?
(What was its initial temperature?)

EXR 4.1.14 We remove 301 kJ of thermal energy from
1.80 L of water that begins at +100. ◦C (it has just finished
boiling). What is its final temperature?

EXR 4.1.15 12.5 L of warm water was being heated. Af-
ter it has gained 1.674 MJ of thermal energy the water has
reached a temperature of +92.0 ◦C. How warm was it to
begin? (What was its initial temperature?)

Equilibrium Temperature

Category 4: Mixing together two amounts of water (mA and mB) at different initial temperatures (TAi and TBi),
the thermal energy that one gains will equal the thermal energy lost by the other. This is conservation of energy:
∆EA +∆EB = 0. Once the system has reached equilibrium the combined mass of water will be at a common final
temperature. From conservation of energy we can solve for unknown temperatures or masses:

Tfinal =
mATAi +mBTBi

mA +mB
(4.1)

(You can practice your algebra skills by deriving this equation, if you want to.)

EXERCISE 4.1.16 We mix together 1.000 L of water at
+30 ◦C with 1.000 L of water at +20 ◦C. What will be the
final temperature of this mixture?

EXERCISE 4.1.17 We mix together 800 mL of water at
+30 ◦C with 1.200 L of water at +20 ◦C. What will be the
final temperature of this mixture?

EXERCISE 4.1.18 We mix together 1.200 L of water at
+30 ◦C with 800 mL of water at +20 ◦C. What will be the
final temperature of this mixture?

EXERCISE 4.1.19 We mix together 1.000 L of water at
+30 ◦C with 93 mL of water that was just boiled +100 ◦C.
What will be the final temperature of this mixture?

4.1.3 Power

The relation between power, time and energy is
∆E = P ×∆t (4.2)

In the context of thermal energy and its relation to temperature, this means that

mC ∆T = P ×∆t (4.3)

Here we must be careful to not confuse the change in temperature ∆T and the interval of time ∆t.

The rate at which thermal energy is transferred by conduction through a boundary of area A and thickness L is

P =K
A
L

(
Tenv −Tsys

)
(4.4)

where Tenv−Tsys is the temperature difference across the boundary (between the system inside the boundary, and the
environment outside the boundary). In that expression K is the thermal conductivity of boundary’s material, which
measures how easily thermal energy is transferred through the material.

EXR 4.1.20 If the temperature of 1 L of water is changing at rate of +1.37C◦ every 5.2 s, at what rate is thermal
energy being transferred to the water?

EXR 4.1.21 If a 1.200 kW microwave runs for 60 s by what increment would the temperature of a 250 mL cup of
water increase?

EXR 4.1.22 If a 118 mL cup of tea is cooling at a rate of 23 W, how long will it take to cool 3 C◦? (Assume that the
tea has the same heat capacity as water.)

4.1.4 Problems

PROBLEM 4.1.01: A large volume of water at 23.2 ◦C is separated from a large volume of water at 45.8 ◦C by a steel
wall of area 0.0223m2 and thickness 3.07 mm. At these temperatures the thermal conductivity of steel is approximately

Ch.4 Energy 53 Exercises for PPT {α13} November 21, 2022



K ≈ 13.5W/m ·K.
(a) At what rate is heat flowing through the steel separator?
(b) If we started with identical initial conditions but the steel separator was replaced with a glass separator (K ≈
0.96W/m ·K) of identical size and thickness, what would be the rate?

PROBLEM 4.1.02: A person, dressed in winter clothes, is standing outside in February in Montreal. Their clothes
(and body fat!) have a combined thermal conductivity of K = 0.047W/m ·K, and an effective thickness of 37 mm. The
air temperature is −25◦C, and their internal body temperature is +37◦C. Assuming a surface area of approximately
1.7m2, at what rate are they losing thermal energy?

PROBLEM 4.1.03: How long would it take a 500 W heater to increase the air temperature from 17 ◦C to 21 ◦C in
room that measures 5.05 m by 4.33 m and is 2.25 m tall? (Air has a density ρ = 1.225kg/m3, and its heat capacity is
Cair = 1.006kJ/kg ·C◦.)

PROBLEM 4.1.04: A 6.117 kg block of steel is placed into a 14.3 L insulated container of water, and then sealed. If
the water was initially at 19.5 ◦C and the steel was at 95.8 ◦C, what will be their final equilibrium temperature? (Use
Csteel = 497J/kg ·K, and assume that very little thermal energy is exchanged with the surroundings.)

PROBLEM 4.1.05: In room that measures 5.05 m by 4.33 m and is 2.25 m tall? the air temperature is 17.0 ◦C. If
a 2.000 L container of water at 42.0 ◦C is placed in this room, what would be the equilibrium temperature of the
water and the air in the room? (Ignore any transfer of thermal energy with anything else, like the walls, or anything
outside; this is just a crude estimate. Use the facts that air has a density ρ = 1.225kg/m3, and its heat capacity is
Cair = 1.006kJ/kg ·C◦.)
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4.2 Mechanical Energy

4.2.1 Kinetic Energy

The linear kinetic energy of an object of mass m moving with speed v is

Klin. = 1
2 mv2 (4.5)

When the mass is measured in kilograms and the speed is measured in metres per second, the kinetic energy calculated
by this formula is in joules. The linear (or translational) speed can be calculated by

v =∆x
/
∆t (4.6)

where ∆x is the change in the object’s position (measured along a straight line), and ∆t is the time taken to travel that
distance.

The angular kinetic energy of an object with moment of inertia I rotating with angular speed ω is

Kang. = 1
2I ω2 (4.7)

When the moment of inertia is measured in kilograms times metres-squared and the angular speed is measured in
radians per second, the kinetic energy calculated by this formula is in joules. The angular (or rotational) speed can be
calculated by

ω=∆θ/
∆t (4.8)

where ∆θ is the change in the object’s orientation (measured by a change in angle), and ∆t is the time taken to travel
that distance. The angular change must be measured in radians:

2πrad= 360◦ (4.9)

Another common unit of rotation is the measure of the number of revolutions of the object (where 1rev = 2πrad), and
the speed in revolutions per second, or revolutions per minute (rpm):

1rps= 1rev
1s

= 2πrad
1s

≈ 6.23rad/s (4.10)

1rpm= 1rev
1min

= 2πrad
60s

≈ 0.1047rad/s (4.11)

If an object (or system of objects) has parts moving independently of each other, then the kinetic energy of the
system is just the sum of the kinetic energies of the parts. If an object is rotating while it is also moving from place to
place, then its kinetic energy is the sum of its linear kinetic energy and its angular kinetic energy.

Linear Kinetic Energy

EXR 4.2.01 What is the kinetic energy of a baseball
(mass 153 grams) thrown at a speed of 23 m/s?

EXR 4.2.02 What is the kinetic energy of a bird (mass
74.8 grams) flying at a speed of 11.6 m/s?

EXR 4.2.03 What is the kinetic energy of a bowling ball
(mass 5.17 kg) moving at 2.21 m/s?

EXR 4.2.04 What is the kinetic energy of a car (mass
1341 kg) driving at a speed of 10.0 km/h?

EXR 4.2.05 What is the kinetic energy of a car (mass
1341 kg) driving at a speed of 20.0 km/h?

EXR 4.2.06 What is the kinetic energy of a car (mass
1341 kg) driving at a speed of 100.0 km/h?

EXR 4.2.07 At what speed (in km/h) is the kinetic en-
ergy of a 1200 kg car equal to the energy (approximately
1 million joules) released by the explosion of one stick of
TNT?

EXR 4.2.08 What is the kinetic energy of a person (mass
65.2 kg) walking at a speed of 6.44 km/h?

EXR 4.2.09 What was the kinetic energy of Usain Bolt
(mass 94 kg) sprinting at a speed of 10.0 m/s?

EXR 4.2.10 A group of twenty-seven young children are
running around, fueled by Halloween candy. In this group
the average mass and speed of a child are 37.1 kg and
3.87 m/s. What is the kinetic energy present in this group
of children?

Angular Kinetic Energy
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EXR 4.2.11 An object with moment of inertia I =
0.875kg ·m2 is rotating at 4.00 rad/s. What is its angular
kinetic energy?

EXR 4.2.12 An object spinning rapidly at 37.1 rad/s has
1.28 J of angular kinetic energy. What is its moment of
inertia?

EXR 4.2.13 An object is rotating at 45.00 rpm (rev-
olutions per minute). If its moment of inertia is I =
1.333kg ·m2 what is its rotational kinetic energy?

EXR 4.2.14 An object with moment of inertia I =
0.411kg ·m2 turns half-way around (180◦) in 0.604 s.
What is its rotational kinetic energy?

EXR 4.2.15 A hollow sphere with moment of inertia
I = 0.03820kg ·m2 completes 7 rotations every 12 sec-
onds. What is its angular kinetic energy?

EXR 4.2.16 A rod, pivoted about its end, with moment
of inertia I = 0.420kg ·m2 swings 37° in one third of a
second. What is its angular kinetic energy?

The next few exercises are considered advanced in that they require you to calculate the moment to inertia from a
formula particular to the object’s geometry (which I will give to you).

EXERCISE 4.2.17 A BluRay disk (diameter 12 cm, mass 0.067 kg) is rotating at 810 rev/s. What is its angular kinetic
energy? (Ignoring the hole in the middle, the moment of inertia is given by I = 1

2 mR2 approximately.)

EXERCISE 4.2.18 A basketball is spinning at three revolutions per second. The basketball is a hollow sphere of
circumference 74.9 cm and mass 0.624 kg. What is its angular kinetic energy? (The moment of inertia of a hollow
sphere, about an axis through its center, is I = 2

3 mR2. Be careful finding the radius!)

EXERCISE 4.2.19 A rectangular rod (mass 5.18 kg, length 41.1 cm, width 17.0 cm) swings about its end. It swings
25° in 0.25 s. What is its angular kinetic energy? (A rectangular rod of length ℓ and width w has a moment of inertia
about an axis at its end given by I = m

( 1
12 w2 + 1

3ℓ
2)

.)
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4.2.2 Work

When a force F⃗ is applied to an object, if the object moves a distance r⃗ along a straight line (its displacement), then the
work done to the object is

W = F r cosθ (4.12)

where θ is the angle between the force F⃗ and the displacement r⃗. This transfer of energy (either into the object or out
of the object) changes the kinetic energy of the object

∆K =W (4.13)

where ∆K = Kfinal −Kinitial, and K = 1
2 mv2 is the linear kinetic energy.

When a torque τ⃗ is applied to an object, if the object turns through an angle ∆θ (its angular displacement) about
the axis defined by the direction of τ⃗, then the work done to the object is

W = τz∆θ (4.14)

This transfer of energy (either into the object or out of the object) changes the kinetic energy of the object

∆K =W (4.15)

where ∆K = Kfinal −Kinitial, and K = 1
2I ω2 is the angular kinetic energy.

EXERCISE 4.2.20 What is the work done by a 5.00 N
force applied across 70.0 cm if the force is parallel to the
displacement?

EXERCISE 4.2.21 What is the work done by a 1.11 N
force applied across 1.23 m if the force points opposite the
displacement?

EXERCISE 4.2.22 What is the work done by a 32.00 N
force applied across 2.75 m if the force points 30◦ above
the direction of the displacement?

EXERCISE 4.2.23 What is the work done by a 42.42 N
force applied across 5.05 m if the force points 69◦ above
the direction opposite the displacement? (Geometrically, if
the object is moving along the +x-axis, the force points 69◦
above the −x-axis.)

EXERCISE 4.2.24 What amount of work needs to be
done to a fully loaded shopping cart (39.3 kg) to reduce
its speed from 1.72 m/s to 0.23 m/s?

4.2.3 Potential Energy

“Potential energy” is the term used to describe forms of energy that are not kinetic energy, but that may (through
interaction) become kinetic energy.

UG = mg h (4.16)

where h is the vertical distance above (h > 0m) or below (h < 0m) the position chosen to be the “zero” gravitational
potential.

When a material has its size deformed by an amount ∆L, if the deformation is in its elastic regime the energy
stored in the material is given by

Uelastic = 1
2 k (∆L)2 (4.17)

It is important to note that ∆L must measure the deformation from the material’s equilibrium (unstressed) size, not
from some arbitrary “initial” size.

EXR 4.2.25 If a 0.375 kg object falls a distance 22.2 cm, by what amount does its gravitational potential change?

EXR 4.2.26 Go up. Go up a bit more. Then come down a little. Only hf − hi. The positions along the way do not
matter.

EXR 4.2.27 Stretch a spring.

EXR 4.2.28 Stretch a spring that is already stretched.
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4.2.4 Conservation of Energy

The fundamental principle of the Conservation of Energy is that if a collection of objects are interacting in ways that
exchange (or transform) energy only between themselves, then the total energy of that system of objects does not change:

Efinal = Einitial (4.18)

This is also written
∆Esys = 0J (4.19)

When the total energy in the system is written as Esys = K +U +ETh (where ETh is the thermal energy generated in
the system), conservation of energy can be written as

∆K +∆U +∆ETh = 0J (4.20)

4.2.5 Power & Efficiency

Power is the rate with respect to time of energy being transferred or transformed:

P =∆E
/
∆t (4.21)

The units of power are watts: 1 W = 1 J/s. Another unit of power that is sometimes used in the context of vehicles and
machinery is the horsepower:

1 hp= 746 W (4.22)

If we know the power and the amount of time, then we have the amount of energy that was transferred or trans-
formed:

∆E = P ×∆t (4.23)

In the context of electricity, where power is measured in kilowatts and time is measured in hours, the amount of energy
is measured in kilowatt-hours

1 kWh= 1 kW×1 h= 1000 W×3600 s= 3.6 MJ (4.24)

as an exact number. In the context of food energy, the food calorie (or kilocalorie) is meaningful: 1 Cal= 4.184 kJ.

Efficiency measures the portion of energy that achieves the purpose. If an amount Einput is put towards a task, but
only Eoutput is performed in the task then the efficiency is defined to be

Eoutput = E ×Einput (4.25)

For example, when gasoline is burnt in a car’s engine to produce motion, only about 30% of the energy produced by the
combustion manifests as kinetic energy of the car (E ≈ 0.30).

EXERCISE 4.2.29 If an old 60 W incandescent light bulb
is left on for one hour, how much energy (in kilojoules) does
it dissipate?

EXERCISE 4.2.30 If a 15 W LED light bulb is left on
for one hour, how much energy (in kilojoules) does it dissi-
pate?

EXERCISE 4.2.31 A 1200 W microwave is set to run at
full power for 77 s. How much energy (in kilojoules) did it

use?

EXERCISE 4.2.32 A television is left in its “stand-by”
mode for eighteen hours. If that mode uses 24.0 W how
much energy (in megajoules) did it use?

EXERCISE 4.2.33 Hydro Quebec charges 5.91 cents per
kilowatt-hour of energy used. If an old 60W incandescent
light bulb is left on for one whole week, how much will it
cost?

4.2.6 Problems

PROBLEM 4.2.01: A 75.00 kg object moving at 5.165 m
s has −400 J of work done to it.

(a) What is its initial kinetic energy?
(b) What will be its final kinetic energy?
(c) What will be its final speed? (Notice that the work done to the object is negative (we’ve removed energy from it) so
its speed will decrease.)
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PROBLEM 4.2.02: When one litre of gasoline (primarily octane) is combusted approximately 42 MJ of thermal energy
are released. An internal combustion engine is mechanism that converts thermal energy into mechanical energy.
Due to the Laws of Thermodynamics (specifically the Law that prevents entropy from decreasing) at most 30% of the
thermal energy can be converted into mechanical energy. This mechanical energy is the work that increases the kinetic
energy of the car. If 50 mL of gasoline is combusted, what final speed (in km/h) can a 1723 kg minivan achieve if it
began at rest?

PROBLEM 4.2.03: A car (mc = 1320 kg) traveling at 60 km/h comes to a stop. Its kinetic energy is converted by friction
into thermal energy in the disc brakes. These are two circular discs steel (C = 466 J

kg·C◦ ), each of mass md = 9.5 kg. By
what amount does their temperature increase?

PROBLEM 4.2.04: Water falls 15.0 m at a rate of 35.0m3/s. Only 60% of that water’s kinetic energy can be captured
and converted to electrical energy by our generators:
(a) What electrical power can be produced?
(b) If we sell the energy produced at 0.06 $/kWh, how much will we profit per day?

PROBLEM 4.2.05: How much does it cost to heat a 2.50 litre container of coffee from 4◦C to 99◦C using a 1200 W
microwave? (Assume the coffee is like water with C = 4.184 J/gram ·◦C, and that Hydro Quebec charges $0.0591/kWh.)

PROBLEM 4.2.06: A person is using a 2200 W heater to keep their apartment warm. After twenty minutes off, it
turns on for five minutes, and that repeats. If they keep it running like this how much will it cost them for a 30-day
month? (Hydro Quebec charges $0.0591/kWh.)

PROBLEM 4.2.07: One litre of gasoline, when combusted, can release 42 MJ (megajoules) of thermal energy. If my
car used 20 litres of gas to drive to Ottawa, then
(a) How much thermal energy did my car produce over the whole trip?
(b) If the trip took 2.0 hours, what was the rate (in kilowatts) at which thermal energy was produced by the engine?
(c) If only 30% of that thermal energy was converted into mechanical work that actually moved my car, what was this
mechanical power output, measured in horsepower?

PROBLEM 4.2.08: As a car drives down the road, its tires are turning. The total kinetic energy of the car is thus the
sum of the linear kinetic energy of the body of the car plus the linear and angular kinetic energies of the tires. A wheel
of radius R that is rolling at a speed v is rotating with an angular speed ω= v/R.

The body of a car has mass 1091 kg. Each of its tires (R = 29.4cm) has mass 13.6 kg and moment of inertia
I = 0.667kg ·m2. If this car is traveling at 55 km/h, what is its total kinetic energy?

PROBLEM 4.2.09: A steam engine expels 81 J of energy to the environment for every 100 J of internal energy it uses.
(a) How much work does it generate? (b) What is the engine’s efficiency?

PROBLEM 4.2.10: A door is being closed. It measures 2.032 m tall by 76.2 cm wide, and has a mass of 11.340 kg. The
door swings 90◦ in 1.66 s.
(a) What is the door’s angular kinetic energy?
(b) A short push was given to make the door close, applied only while it swung through the first 15◦ of its motion.
What force was applied (perpendicular) to the edge of the door?

PROBLEM 4.2.11: CHALLENGE: A fan of diameter 45 cm is moving air at 3.8 m/s. What is the power exerted by the
fan to move the air at this rate? (The density of air is ρair = 1.225kg/m3.)
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4.3 Energy in Biological Contexts

In the context of nutrition the unit of energy is the Calorie:

1Cal= 4184J (4.26)

This is the energy that will increase the temperature of one litre of water by 1C◦ (approximately).

For each litre of oxygen that a person respires metabolic processes release approximately 20 kJ of energy that can
be used by the body to perform mechanical work, or to maintain temperature.

A unit of power that is sometimes used is the “horsepower”:

1hp= 746W (4.27)

This power can be achieved (for very brief intervals) by elite athletes!

4.3.1 Units

EXR 4.3.01 What is 100 Cal expressed in kilowatt-hours?

EXR 4.3.02 What is half a horse-power expressed in Calories per minute?

EXR 4.3.03 What is 12.2 mL of Oxygen per second expressed in litres of Oxygen per minute?

EXR 4.3.04 What is the “1LO2 → 20kJ” relation expressed in Calories?

4.3.2 Metabolic Energy & Power

EXR 4.3.05 What is the rate of metabolic power output of a sitting person who consumes 0.30 L of oxygen per
minute?

EXR 4.3.06 What is the rate of oxygen consumption during sleep assuming a metabolic rate of 75 W?

EXR 4.3.07 If a person eats 1670 Cal a day, what power (measured in watts) are they generating, on average?

EXR 4.3.08 If a person’s metabolic rate is 75 W while they are sleeping (for eight hours), but their average metabolic
rate over a 24 h period is 81 W, then what is their average metabolic rate while they are awake?

4.3.3 Biomechanical Energy, Work & Power

EXERCISE 4.3.09 While a person is walking one of their legs swings forward through an angle of 30◦ in 0.75 s. If
their leg has a moment of inertia I = 1.83kg ·m2, what is the angular kinetic energy of their leg?

EXERCISE 4.3.10 A person is waving their arm through an angle of 42◦, one side to the other, four times in 1.08 s. If
their arm has a moment of inertia I = 0.583kg ·m2, what is the angular kinetic energy of their arm?

EXERCISE 4.3.11 A person opening a door does 1.305 J work to it (changing its motion from being at rest to swinging
open). Their upper arm rotates about their shoulder 107◦ while pulling on the door. If the muscles in the shoulder
complex can be modeled as a single force acting along a line 20.8 mm from the shoulder joint, what is the tension in
these muscles?

EXERCISE 4.3.12 A person performs 0.103 kWh of work during their day. If the efficiency of the food-to-work process
in their body is only 18%, how many Calories did their body consume to perform this work?

4.3.4 Problems

EXERCISE 4.3.13 A person who is standing upright lifts one of their arms (3.5 kg) from straight at their side to
straight over their head. During this motion the center of mass of this segment is raised 55 cm. If they repeat this
motion 40 times, and the efficiency of their internal energy conversion is 18%, how many calories will this require?
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PROBLEM 4.3.01: One serving of Pad Thai contains about 573 Calories of food energy (1 Calorie = 4.184 kJ). If you
have a body mass of 65 kg, when you walk at 9 km/h you “burn” 9.55 Calories per minute.
(a) What is the rate of energy expenditure, measured in watts?
(b) At this rate how long (in hours) would it take to “burn off” your Pad Thai?

PROBLEM 4.3.02: Assuming that muscles convert food energy into mechanical energy with an efficiency of 22%, how
much food energy is converted by an 80-kg man climbing a vertical distance of 15m? Express your answer in kilojoules,
and in food Calories.

PROBLEM 4.3.03: A grocery store worker is placing pop bottles on a shelf. Every 24 s they place ten 2 L bottles on the
shelf, raising them 72 cm from the delivery pallet to the shelf. If they continue this job, at this rate, for 13 minutes:
(a) What is the total work done?
(b) How many Calories did they “burn”? (Assume E = 0.20.)

PROBLEM 4.3.04: An 80-kg man runs up stairs, ascending 6.0 m in 8.0 s. What is his power output in kilowatts, and
in horsepower?

PROBLEM 4.3.05: The chemical process that drives muscles can produce about 20 kJ of mechanical energy for each
litre of oxygen a human respires. If a sprinter consumes 4.1 L/min of oxygen, what is their maximum possible power
output, in watts, and in Calories per minute?

PROBLEM 4.3.06: A 64kg woman is slowly descending the stairs, traveling 16.5m downwards in 37s. (a) At what
rate must her body dissipate gravitational energy so that so descends at a constant rate? (b) If all of that energy was
converted into thermal energy in her body, by what amount would her temperature increase?

PROBLEM 4.3.07: In the video “Olympic Cyclist vs Toaster”, Robert Förstemann (Germany) sustains a power output
of 700W for one minute, approximately. (Notice: That is almost one horse-power!) (a) What was his total energy
output, measured in kilowatt-hours? (b) If that output was only 22% of the chemical energy consumed by his muscles,
how many Calories did that effort require? (c) Consequently, how much oxygen did he need to respire?

PROBLEM 4.3.08: While a person is walking one of their leg swings forward through an angle of 30◦ in 0.75 s. Their
leg has a moment of inertia I = 1.83kg ·m2. At the beginning of the swing their leg has ω= 0rad/s, and the maximum
occurs half-way through the swing, where ω equals twice the average angular speed across the whole motion. Assuming
the moment arm between the muscles and the hip joint is approximately 5 cm, what it the tension in the muscles during
this motion?

PROBLEM 4.3.09: A person nodding their head (“yes”) moves their head 15◦ up-and-down five times in 1.83 s. For
this rotation their head has a moment of inertia I = 0.0847kg ·m2. The muscles at the back of their neck act along a
line 43.8 mm from the joint at the base of their skull. What is the tension in these muscles? (Note: At the beginning
of the “nod” head leg has ω= 0rad/s, and the maximum occurs half-way through the motion, where ω equals twice the
average angular speed across the whole motion.)
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Chapter 5

Waves
5.1 Periodic Waves
5.1.1 Period & Frequency

In these exercises we will be determining the period T (the amount of time between repetitions) and the frequency f
(the rate of repetition) of various phenomena. The frequency f of a repeating event is defined to be the ratio of the
number of repetitions to the time taken for those repetitions to occur, and is measured in hertz:

1 hertz= 1 repetition
second (5.1)

1 Hz= 1 rep
s (5.2)

(Note that “repetition” is not an SI unit, but is a place-holder or reminder. When calculating it does not contribute
anything except to help keep track of consistency. Strictly speaking 1 Hz = 1 s−1.) Because of their definitions they
relate: f = 1/T. So we can also write the units of period as “seconds per repetition”.

EXR 5.1.01 If a person’s heart rate is 70 beats per
minute, what are the period and frequency of that oscil-
lation?

EXR 5.1.02 The human heart rate can fall in the range
from 60 beats per minute (very relaxed) to 120 beats per
minute (intense exercise). To what range of frequencies
does this correspond?

EXR 5.1.03 An adult human at rest has a respiration
rate between 12 to 16 times a minute. To what range of
frequencies does this correspond?

EXR 5.1.04 During exercise a person is respiring at a
rate of 40 breaths per minute. What is period and fre-
quency of this rate?

EXR 5.1.05 The average computer user can type about
190 characters per minute, while professional typists can
type as fast as 360 characters per minute. What are the
frequency of keys per second for these two keyboardists?

EXR 5.1.06 Players of video games sometimes need to
perform “button mashing” when they repeatedly press a
control a rapidly as possible. A player pressed a button
191 times in 12 seconds. What are the period and fre-
quency of this rate of button mashing?

EXR 5.1.07 The average male voice has an oscillation
around 130 Hz. A bass singer usually has a low note
around 82.4 Hz. One of the lowest bass singers, a fellow
by the name Tim Storms, can sing notes lower than B0

(30.87 Hz)! What are the periods of oscillation of the vocal
chords of men making these three notes?

EXR 5.1.08 The average female voice has an oscillation
around 210 Hz. A soprano singer usually has a high note
around 650 Hz. Above the soprano range is the so-called
whistle register. Mariah Carey was once recorded hitting
G7 (3.136 kHz)! What are the periods of oscillation of the
vocal chords of women making these three notes?

EXR 5.1.09 The heart of a hummingbird can beat as
fast as 1260 times a minute. What is this rate measured
in hertz?

EXR 5.1.10 The wings of a hummingbird can flap as
fast as 10000 times in three minutes! What is this rate
measured in hertz?

EXR 5.1.11 The musical-sounding notes produced by
birds, birdsong, falls in the range 1 kHz to 8 kHz. (Com-
pare this with the whistle register of human singing.)
What is the range of the periods of oscillation of the vo-
cal chords of birds making notes in this range?

EXR 5.1.12 Lower-frequency sounds travel further than
high-frequency sounds. (This is due to the phenomena of
attenuation that we will study later.) Elephants communi-
cate using some frequencies below what humans can hear.
The tones they produce fall in the range of 5 Hz to 30 Hz.
What is the range of the periods of oscillation correspond-
ing to notes in this range?
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5.1.2 The Fundamental Relationship for Periodic Waves

These exercises will use the fundamental relationship for periodic waves

λ= v
/

f (5.3)

to relate Frequency ( f ), Wavelength (λ) and Wavespeed (v). The SI units to use for these quantities are hertz (Hz) for
frequency, metres (m) for wavelength, and metres per second (m/s) for wavespeed.

EXR 5.1.13 What is the speed of a periodic wave whose
frequency and wavelength are 500 Hz and 0.5 m respec-
tively?

EXR 5.1.14 What is the wavespeed on a steel cable
if a periodic wave of frequency 75 Hz has wavelength
1.333 m?

EXR 5.1.15 What is the speed of an ultrasonic wave in
flesh whose frequency and wavelength are 2.20 MHz and
705µm respectively?

EXR 5.1.16 What is the speed of a ultrasonic wave
in air whose frequency and wavelength are 45.0 kHz and
7.63 mm respectively?

EXR 5.1.17 What is the wavelength of a periodic wave
on a stretched spring whose wavespeed and period of os-
cillation are are 75 m/s and 0.005 s respectively?

EXR 5.1.18 Electrical power is delivered by oscillating
voltages of frequency 60.0 Hz. These electrical oscillations
can sometimes cause mechanical oscillations of equal fre-
quency, which then become sound in the surrounding air.
Since the wavespeed in air is 343 m/s what is the wave-

length of these sounds?

EXR 5.1.19 What is the wavelength of an underwater
sound wave whose wavespeed and frequency of oscillation
are are 1480 m/s and 5.90 kHz respectively?

EXR 5.1.20 Some ultrasonic waves traveling through
fat tissue have wavespeed and frequency of oscillation
1450 m/s and 1.55 MHz respectively. What is the wave-
length of these waves?

EXR 5.1.21 What is the frequency of a periodic wave
whose wavespeed and wavelength are 120 m/s and 30 cm
respectively?

EXR 5.1.22 What is the frequency of a wave on a
stretched spring whose wavespeed and wavelength are
3.91 m/s and 32.5 cm respectively?

EXR 5.1.23 What is the frequency of a sound wave
whose speed and wavelength are 343 m/s and 20.3 cm re-
spectively?

EXR 5.1.24 What is the frequency of an ultrasonic wave
traveling through bone whose speed and wavelength are
3290 m/s and 1.94 mm respectively?
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5.1.3 Graphs of Waves
Determining the Amplitude, Wavelength, and other parameters, of Pulses and Periodic Waves from Graphs.

Terminology: A pulse is a wave that does not repeat. A pulse travels at the wavespeed of the medium, but does not
have a wavelength or frequency because it does not repeat across space or across time.

Displacement versus Position

EXR 5.1.25 What are the amplitude and wavelength of the periodic wave graphed below?
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EXR 5.1.26 What are the amplitude and wavelength of the periodic wave graphed below?
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EXR 5.1.27 What are the amplitude and wavelength of the periodic wave graphed below?
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EXR 5.1.28 What are the amplitude and wavelength of the periodic wave graphed below?
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EXR 5.1.29 What are the amplitude and wavelength of the periodic wave graphed below?
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EXR 5.1.30 What are the amplitude and wavelength of the periodic wave graphed below?

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2
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EXR 5.1.31 What are the amplitude and wavelength of the periodic wave graphed below?

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

EXR 5.1.32 What are the amplitude and wavelength of the periodic wave graphed below?

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2
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Displacement versus Time

EXR 5.1.33 A periodic wave is traveling across a stretched string. Graphed below is the displacement as a function
of time of a single piece of that string. What are the amplitude, period, and frequency of this wave?

t(s)

y(cm)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−2

−1

0

1

2

EXR 5.1.34 A periodic wave is traveling across a stretched string. Graphed below is the displacement as a function
of time of a single piece of that string. What are the amplitude, period, and frequency of this wave?

t(s)

y(cm)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−2

−1

0

1

2

EXR 5.1.35 A periodic wave is traveling across a metal rod. Graphed below is the displacement as a function of time
of a single piece of that object. What are the amplitude, period, and frequency of this wave?

t(ms)

y(µm)

10 20 30 40 50

−10

−5

0

5

10
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EXR 5.1.36 A periodic sound wave is traveling through water. Graphed below is the displacement as a function of
time of a single portion of the medium. What are the amplitude, period, and frequency of this wave?

t(µs)

y(nm)

20 40 60 80 100

−10

−5

0

5

10
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Pairs of Graphs

PROBLEM 5.1.01: Below are two photographs of a traveling periodic wave, taken at two different times. (The time
between these photographs is less than half the period of oscillation of the source.) (a) What direction is the wave
traveling, and at what speed? (b) What are the wavelength and frequency of this wave?

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2 t1 = 0.210 s

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2 t2 = 0.350 s
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PROBLEM 5.1.02: Below are two frames from a video of a traveling periodic wave. (The time between these pho-
tographs is less than half the period of oscillation of the source.) (a) What direction is the wave traveling, and at what
speed? (b) What are the wavelength and frequency of this wave?

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2 t1 = 1.050 s

x(m)

y(cm)

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2 t2 = 1.052 s
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PROBLEM 5.1.03: Below are two frames from a video of a periodic wave traveling along a thin metal rod. (The time
between these photographs is less than half the period of oscillation of the source.) (a) What direction is the wave
traveling, and at what speed? (b) What are the wavelength and frequency of this wave?

x(m)

y(mm)

10 20 30 40 50

−10

−5

0

5

10 t1 = 7.276 s

x(m)

y(mm)

10 20 30 40 50

−10

−5

0

5

10 t2 = 7.281 s
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PROBLEM 5.1.04: The graphs below show measurements made of a traveling wave on a string. The first graph is the
displacement (y) as a function of time (t) for a small piece of the string. The second graph is the displacement (y) as a
function of position (x) along the length, taken at t = 0 s.

Find (a) the amplitude, (b) the wavelength, (c) the period, (d) the frequency, and (e) the wavespeed of the wave.

t(s)

y(cm)

0.25 0.50 0.75 1.00

−2

−1

0

1

2

x(m)

y(cm)

1 2 3 4 5 6 7 8 9

−2

−1

0

1

2
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5.1.4 Problems

PROBLEM 5.1.05: The figures below show a pulse on a string at two times: t = 0 s and t = 0.2 s. Since this is a pulse,
not a continuous periodic wave, so there is neither a “wavelength” nor a “period” of oscillation. (Note carefully that the
horizontal and vertical scales are different.) (a) What is the speed of the pulse? (b) What is the vertical speed of the
piece of string labeled “A” during this interval? (c) What is the position of the peak of the pulse at t = 3.0 s? (d) At
what time will the pulse arrive at the x = 4.0 m position?
Answers: (a) v = 1.5 m/s; (b) v = 0.30 m/s; (c) x = 6.0 m; and (d) t = 1.67 s.
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PROBLEM 5.1.06: The graphs below show measurements made of a traveling wave on a string. The first graph is the
displacement (y) as a function of time (t) for a small piece of the string. The second graph is the displacement (y) as a
function of position (x) along the length, taken at t = 0 s.

Find (a) the amplitude, (b) the wavelength, (c) the period, (d) the frequency, and (e) the wavespeed of the wave.

Answers: (a) A = 1.5 cm; (b) λ= 3.0 m; (c) T = 0.500 s; (d) f = 2.00 Hz; and (e) v = 6.0 m/s.

t(s)

y(cm)

0.25 0.50 0.75 1.00

−2

−1

0

1

2
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y(cm)
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PROBLEM 5.1.07: The graph below shows a sine wave traveling to the right on a string. The dashed line is the
shape of the string at time t = 0 s, and the solid curve is the shape of the string at time t = 0.12 s. (Note carefully that
the horizontal and vertical scales are different.) Find (a) the amplitude, (b) the wavelength, (c) the speed, (d) the
frequency, and (e) the period of the wave.
Answers: (a) A = 2.5 cm; (b) λ= 24 m; (c) v = 50 m/s; (d) f = 2.08 Hz; and (e) T = 0.48 s.

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

distance (m)

di
sp

la
ce

m
en

t
(c

m
)

Ch.5 Waves 75 Exercises for PPT {α13} November 21, 2022



5.2 Sound

Traveling waves in air, water and people.

5.2.1 Intensity, Power, and Area

Intensity measures the way in which the power transferred by a wave is distributed across an area:

I = P
/

A (5.4)

Intensity is typically measured in watts per square metre W/m2, but in some circumstances (when the areas involved
are human-sized) it is measured in watts per square centimetre W/cm2. It is important to remember that while lengths
convert as 1 m=100 cm, areas convert as 1m2 = (100cm)2 = 10000cm2, so that 1cm2 = 10−4 m2. In all cases pay careful
attention to the units of the lengths and the units of the area(s) involved.

When a wave spreads out in three dimensions, the wavefronts are spherical. The surface area of a sphere is given
by

Asphere = 4π r2 (5.5)

(Yes, this differs from the formula for the area of a flat circle by a factor of four, so be careful not to mix them up.)
Because of this, the intensity a distance r from a source of power P (producing either sound or light) is

I = P
4π r2 (5.6)

This is known as the inverse-square law for intensity.

EXR 5.2.01 Find the intensity (measured in W/m2) of a
wave that delivers 16.0 W to a rectangular area that mea-
sures 23 cm by 71 cm.

EXR 5.2.02 Find the intensity (measured in W/m2) of
a wave that delivers 72.5 W to the surface of a door that
measures 1.05 m by 1.82 m.

EXR 5.2.03 Find the intensity (measured in W/m2) of a
wave that delivers 60.0 W to a rectangular area that mea-
sures 2.50 m by 3.75 m.

EXR 5.2.04 Find the intensity (measured in W/m2) on
a soccer field (measuring 73 m by 110 m) illuminated by
7.50 kW of lighting.

EXR 5.2.05 Find the intensity (measured in W/cm2) of a
wave that delivers 90.4 W to a rectangular area that mea-
sures 7.5 cm by 11.0 cm.

EXR 5.2.06 Find the intensity (measured in W/cm2) of
a wave that delivers 72.5 W to the surface of a door that
measures 1.05 m by 1.82 m.

EXR 5.2.07 Find the intensity (measured in W/cm2) of
light that delivers 15.0 W onto a piece of paper (measuring
210 mm by 297 mm).

EXR 5.2.08 Find the intensity (measured in W/cm2)

of a computer monitor that emits 0.500 W of light energy.
(measuring 274 mm by 487 mm).

EXR 5.2.09 Find the intensity (measured in W/m2) of
a wave that delivers 13.7 W to a circular area 5.00 m in
diameter.

EXR 5.2.10 Find the intensity (measured in W/m2) of
a wave that delivers 88 mW to a circular area 75.2 cm in
diameter.

EXR 5.2.11 Find the intensity (measured in W/cm2) of
a wave that delivers 0.42 W to a circular area 6.2 cm in
diameter.

EXR 5.2.12 Find the intensity (measured in W/cm2) of
a wave that delivers 72 W to a circular area 3.20 m in di-
ameter.

EXR 5.2.13 Find the intensity of a wave measured
5.00 m from a 4.20 W source.

EXR 5.2.14 Find the intensity of a wave measured
5.42 m from a 0.37 W source.

EXR 5.2.15 Find the intensity (measured in units of
W/cm2) of a wave measured 6.2 cm from a 17.4 W source.

EXR 5.2.16 Find the intensity (measured in units of
W/cm2) of a wave measured 2.56 m from a 0.909 W source.
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5.2.2 Intensity, Energy, and Time

Since power relates to energy and time, we can relate intensity to the amount of energy that was transferred:

P = I × A (5.7)

∆E = P ×∆t = I × A×∆t (5.8)

These relations can also allow us to solve for the time required to deliver a required amount of energy:

∆t =∆E
/

(I × A) (5.9)

If the source produces a wave whose amplitude is modulated, then the time required will be longer than that given by
the equation above. The most common is when the source operates on a duty cycle, alternating between being on then
off repeatedly. If δ≤ 1 is the fraction of time that the source is “on”, then ∆ton = δ×∆ttotal, so that

∆ton =∆E
/

(I × A) (5.10)

∆ttotal =∆ton
/
δ (5.11)

where I is the intensity of the wave when the source is “on”.

Where necessary recall that 1Cal = 4184.J is the nutritional calorie, and that 1kWh = 3.6MJ is the usual unit of
hydro-electrical energy (where each of these conversions are exact numbers).

EXR 5.2.17 Find the energy (measured in J) delivered
by a wave of intensity 2.11 W/m2 to a rectangular area
that measures 1.24 m by 75 cm after 51 seconds.

EXR 5.2.18 Find the energy (measured in J) delivered
by a wave of intensity 37.0 mW/m2 to an area of 4.00 m2

after one hour.

EXR 5.2.19 Find the energy (measured in kWh) deliv-
ered by a microwave oven (intensity 2.560 kW/m2) to an
area measuring 28 cm by 23 cm after 33 minutes.

EXR 5.2.20 Find the energy (measured in kWh) deliv-
ered by a wave of intensity 13.0 W/m2 to an area of 15.0 m2

after eight hours.

EXR 5.2.21 Find the energy (measured in J) delivered
by a wave of intensity 0.64 W/cm2 to a rectangular area
that measures 23 cm by 71 cm after 5 minutes.

EXR 5.2.22 Find the energy (measured in J) delivered
by a wave of intensity 0.053 W/cm2 to a rectangular area
that measures 17 cm by 20 cm after 3 minutes and 12 sec-
onds.

EXR 5.2.23 Find the energy (measured in Cal) de-
livered by a wave of intensity 12.0 W/cm2 to an area of
200 cm2 after seven and a half minutes.

EXR 5.2.24 Find the energy (measured in Cal) deliv-
ered by a wave of intensity 9.50 W/cm2 to a circular area

of diameter 18.0 cm after fifteen minutes.

EXR 5.2.25 Find the time required (measured in min-
utes and seconds) to deliver 513 kJ over a rectangular area
measuring 20.6 cm by 19.4 cm using a source with inten-
sity 32 W/cm2.

EXR 5.2.26 Find the time required (measured in min-
utes and seconds) to deliver 1.20 MJ over a square area
measuring 0.50 m on each side using a source with inten-
sity 6.4 W/cm2.

EXR 5.2.27 Find the time required (measured in min-
utes and seconds) to deliver 0.765 Cal over a rectangular
area measuring 21 cm by 23 cm using a source with inten-
sity 5.23 mW/cm2.

EXR 5.2.28 Find the time required (measured in
minutes and seconds) to deliver 82.0 Cal over a circular
area of diameter 15.0 cm using a source with intensity
7.00 W/cm2.

EXR 5.2.29 Find the time required (measured in min-
utes and seconds) to deliver 513 kJ over a rectangular area
measuring 20.6 cm by 19.4 cm using a source with inten-
sity 32 W/cm2 operating on a 20% duty cycle.

EXR 5.2.30 Find the time required (measured in
minutes and seconds) to deliver 62.0 kJ over a circular
area 8.7 cm in diameter using a source with intensity
17.3 W/cm2 operating on a 10% duty cycle.
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5.2.3 Sound Level

The quantitative measure β that models subjective loudness is sound level, defined by:

β= (10dB) log
(
I
/

I0
)

(5.12)

The logarithm returns a number, and the factor 10dB expresses the level as a multiple of the unit decibel (dB) that
measures level. The argument of the logarithm is the ratio of the intensity I of the sound wave to I0 the reference
intensity which is defined to be the exact quantity

I0 = 1×10−12 W/m2 (5.13)

which corresponds (roughly) to the quietest sound that an average person can hear.

In cases where the level is known and the intensity is asked for, the relation is

I = I0 ×10β/10dB (5.14)

Take care with the exponents in these calculations! Ideally you will figure out how to get your calculator to express all
quantities in scientific notation.

EXR 5.2.31 Find the sound level (in decibels) of a sound
that has intensity 1×10−6 W/m2.

EXR 5.2.32 Find the sound level (in decibels) of a sound
that has intensity 7.5×10−8 W/m2.

EXR 5.2.33 Find the intensity (measured in µW/m2) of
a sound of level 65dB.

EXR 5.2.34 Find the intensity (measured in µW/m2) of
a sound of level 53dB.

PROBLEM 5.2.01: Find the time required (measured in minutes and seconds) to deliver 1.37µJ over an area of
21.0cm2 using a source with a sound level of 70 dB.

PROBLEM 5.2.02: Find the energy delivered (measured in microjoules) over a circular area of diameter 14.7cm using
a source with a sound level of 80 dB after two and a half minutes.

PROBLEM 5.2.03: Find the energy delivered (measured in microjoules) over a circular area of 0.60cm2 using a source
with a sound level of 80 dB after three minutes.

PROBLEM 5.2.04: Ultrasound waves can have very large intensities without posing a danger to human hearing since
no portion of the inner ear responds to such high frequencies. If we have such a wave, of intensity 10+5 W/m2, what
would be:

(a) The sound level of the wave?

(b) The total energy delivered to 1cm2 after one minute?
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5.2.4 Sound Attenuation

The energy content of sound waves decreases with distance traveled due to internal friction in the medium. This
process is called attenuation. Attenuation relates the distance traveled by the wave (∆x) to the change in sound level
(∆β):

α=−∆β/
∆x (5.15)

The constant α is the attenuation coefficient. It is a property of the medium that depends upon the frequency of the
wave. In the context of sound waves traveling through air α is usually measured in units of dB/km. In the context of
ultrasound traveling through water or the human body α is usually measured in units of dB/cm.

Calculating energy deposition from attenuation: A drop in intensity to a fraction I2/I1 = s < 1 leads to a change in
level by ∆β= (10dB)log s. Since s < 1 and log s < 0, it follows that ∆β< 0 dB.

EXR 5.2.35 If the sound level of a wave has decreased
by 7.5 dB after traveling 31 cm, what is the attenuation
coefficient measured in dB/cm?

EXR 5.2.36 The sound level of a wave traveling through
air decreases by 80 dB due to attenuation after traveling
333 m. What is the attenuation coefficient measured in
dB/km?

EXR 5.2.37 Ultrasound waves ( f = 4 MHz) pass-
ing through muscle decrease by 13.7 dB after traveling
2.71 cm. What is the attenuation coefficient measured in
dB/cm?

EXR 5.2.38 If a wave is propagating through a mate-
rial with an attenuation coefficient of 5.4 dB/cm, by what
amount will its sound level have decreased after propagat-
ing 3.3 cm?

EXR 5.2.39 Ultrasonic waves of frequency 1 MHz
propagates through air with an attenuation coefficient of
12.0 dB/cm. By what amount will the wave’s sound level
have decreased after propagating 2.20 mm?

EXR 5.2.40 Ultrasonic waves of frequency 10 MHz
propagates through water with an attenuation coefficient
of 0.232 dB/cm. By what amount will the wave’s sound
level have decreased after propagating 43.2 cm?

EXR 5.2.41 If a wave is propagating through a material
with an attenuation coefficient of 8.0 dB/cm, what distance
would it have to propagate before its sound level has de-
creased by 37 dB?

EXR 5.2.42 Ultrasound at 3 MHz propagates
through muscle tissue with an attenuation coefficient of
4.15 dB/cm. What depth will it penetrate before its sound
level has decreased by 22.0 dB?

EXR 5.2.43 High-frequency audible sound waves of
10 kHz propagates through air with an attenuation coeffi-
cient of 190 dB/km when the humidity is 40%. What dis-
tance would sound of that frequency have to travel before
its sound level had decreased by 10.0 dB due to attenua-
tion alone?
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5.2.5 Problems

PROBLEM 5.2.05: An ultrasound device is set to produce waves of frequency 3.00 MHz. If the attenuation of this
wave is 3.8 dB/cm as it propagates into muscle tissue, at what depth (measured in millimetres) is 50% of the energy
delivered?

PROBLEM 5.2.06: An ultrasound device is set to produce waves of frequency 1.00 MHz. If the attenuation of this
wave is 4.95 dB/cm as it propagates through tendon, at what depth (measured in millimetres) is 37% of the energy
delivered?

PROBLEM 5.2.07: In the human body sound waves travel at about 1540 m/s. An ultrasound device is set to produce
waves of frequency 4.00 MHz.
(a) What is the wavelength (in millimetres) of these waves, in the body?
(b) If the attenuation of the wave is 8.2 dB/cm, at what depth (measured in millimetres) is 90% the energy delivered?
(c) What is this depth, expressed as a multiple of the wavelength?

PROBLEM 5.2.08: The attenuation coefficient of skin at 2 MHz is approximately 5dB/cm. If 2 MHz ultrasound of
intensity 0.64W/cm2 is applied over an 12 cm-diameter circular area of skin that is 3 mm thick:
(a) What is the intensity of the wave just below the skin?
(b) What amount of energy is delivered into the portion below skin after seven minutes?
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Chapter 6

Electricity
“Electricity” is broad term for the phenomena related to the controlled transfer of electric charge. In the context of

electric circuits this allows for the controlled transfer and transformation of electric energy.

6.1 Electric Current, Voltage and Power

Electric charge changing location transfers electric energy. Interaction of these charges with their surrounding ma-
terial can then transform their electric energy into other forms. With current measuring the rate of charge motion it
becomes meaningful to speak of the power transferred by current. The following exercises explore these ideas.

6.1.1 Current, Charge and Time

Electric charge is an intrinsic physical property (like mass) of the fundamental particles of matter.

Electric current measures the rate at which electric charge moves from place to place.

I = |∆Q|
∆t

(6.1)

With charge measured in coulombs and time in seconds, current is measured in amperes (1 A=1 C/s). Since a coulomb
is a large amount of charge we will quite frequently be measuring currents in smaller increments such as milliamperes
mA and microamperes µA. Notice that this quantity depends upon the magnitude of the charge, and not its sign.

Because of the relation between charge, time and current, an alternate unit for charge is the millampere-hour
(1mAh= 0.001A×3600s= 3.6C). This unit is often used for measuring the capacity of small batteries, like those found
in portable electronics.

EXR 6.1.01 What is the electric current (measured
in milliamperes) when 75.0 C of charge is transferred in
120 s?

EXR 6.1.02 What is the electric current (measured in
microamperes) when 632µC of charge is transferred in
7.02 s?

EXR 6.1.03 What is the electric current (measured in
amperes) when 37.0× 10+12 electrons are transferred in
1.00s?

EXR 6.1.04 What is the electric current (measured in
amperes) when one-tenth of a mole of electrons are trans-
ferred in one hour?

EXR 6.1.05 What is the electric charge (measured in
coulombs) transferred when a current of 0.500 A flows for
12.0 s?

EXR 6.1.06 What is the electric charge (measured in
coulombs) transferred when a current of 128 mA flows for

seven and a half minutes?

EXR 6.1.07 What is the electric charge (measured in
milliamp-hours) transferred when a current of 88.8 mA
flows for 20 minutes and 16 seconds?

EXR 6.1.08 If a current of 210 mA flows for 7 minutes
how many moles of electrons are transferred?

EXR 6.1.09 What amount of time (measured in minutes
and seconds) must elapse for a 1.30 A current to transfer
420 C?

EXR 6.1.10 What amount of time (measured in hours
and minutes) must elapse for a 0.750 A current to transfer
1200 mAh?

EXR 6.1.11 Car batteries have capacities measured in
amp-hours (not milliamp-hours). What amount of time
(measured in minutes and seconds) must elapse for a
833 A current to drain 70 Ah from a car battery?
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6.1.2 Voltage, Charge and Energy

Similar to how there is gravitational energy between separated masses there is electrical energy between separated
charges. The electrical potential difference, commonly referred to as the voltage difference, is defined by

∆V = ∆E
∆Q

(6.2)

This is the ratio of the change in electrical energy to the amount of charge that experienced that change. (The analogous
quantity in the case of gravity would be (mg∆y)

/
m = g∆y, which only depends upon the interaction and its geometry,

but not the thing that is being interacted with.) The units of voltage difference are volts: 1V= 1J/C.

As an example, if −72mC charge is transferred across a +1.50V difference, the change in electrical energy is
∆E =∆V ×∆Q = (+1.50V)× (−0.072C)=−0.108J. It is critical to note that, unlike the definition of current, the signs
of the quantities involved are important.

EXR 6.1.12 What voltage difference was crossed by
+0.700mC if its electric energy changed by +8.40mJ?

EXR 6.1.13 What voltage difference was crossed by
+0.700C if its electric energy changed by −77.7mJ?

EXR 6.1.14 What voltage difference was crossed by
an electron if its electric energy changed by −0.2755 ×
10−15 J?

EXR 6.1.15 What voltage difference was crossed by
+0.833mAh if its electric energy changed by −27.0J?

EXR 6.1.16 If +2.11mC crosses a voltage difference of
−0.570V what is the change in the charge’s electrical en-
ergy?

EXR 6.1.17 If −73.5µC crosses a voltage difference of
−4.44mV what is the change in the charge’s electrical en-
ergy?

EXR 6.1.18 If −25.6×10−12 C crosses a voltage differ-
ence of +5.08×10+4 V what is the change in the charge’s
electrical energy?

EXR 6.1.19 If +295mAh crosses a voltage difference of
+12.0V what is the change in the charge’s electrical en-
ergy?

EXR 6.1.20 What amount of charge needs to cross
640 mV to transfer 10.24µJ?

EXR 6.1.21 What amount of charge (measured in mAh)
needs to cross 1.500 V to transfer 15.12 kJ?
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6.1.3 Electrical Power

Charges moving across a voltage difference transfer energy. When current flows across a voltage difference, the rate of
charge motion relates to the rate of energy transfer, which is power:

P = I ×∆V (6.3)

Consider the units of current times voltage:

A×V= C
s
× J

C
= J

s
=W (6.4)

Also, from the relation between power and energy, we have that

∆E = P ×∆t (6.5)

= I ×∆V ×∆t (6.6)

EXERCISE 6.1.22 What power is being delivered by
250 mA flowing through a 1.50 V AA-battery?

EXERCISE 6.1.23 What power is being delivered by 62 A
flowing through a 12 V car battery?

EXERCISE 6.1.24 What power is being delivered by
2.15 A flowing through a resistor with a 5.52 V voltage dif-
ference across it?

EXERCISE 6.1.25 Charging a 9.00 V battery by forcing
0.987 A through it delivers what power?

EXERCISE 6.1.26 What energy is delivered by 325 mA
flowing across 1.50 V after 30 s?

EXERCISE 6.1.27 What energy is delivered by 0.850 mA
flowing across 33.3 mV after seventeen minutes?

EXERCISE 6.1.28 What current must flow across 120 V
is required to deliver 1500 W?

EXERCISE 6.1.29 What current must flow across 9.00 V
is required to deliver 7.20 W?
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6.1.4 Problems

PROBLEM 6.1.01: A total of 720 mAh of electrons flows through a 1.500 V battery.
(a) What amount of charge in coulombs (including its sign) crossed the battery?
(b) If this charge gained electrical energy, what was the sign of the voltage difference?
(c) What was the change in the charge’s electrical energy?
(d) If the battery was providing this energy at a constant rate of 300 mW, what was the current?

PROBLEM 6.1.02: Desk-top cup warmer:
(a) How many AA batteries would you need to warm a cup of tea by 3.12 C◦? (Each 1.500 V battery can deliver
2800mAh. The cup contains 230 mL of tea, which has a heat capacity roughly that of water.)
(b) If we want to achieve this warming in five minutes, what must be the resistance of the heating element?
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6.2 Electric Circuits

Electric charge changing location (a current) transfers electric energy. Interaction of these charges with their sur-
rounding material can then transform their electric energy into other forms, and vice versa. An electric circuit is an
arrangement of circuit elements (like batteries, resistors, LEDs, etc) connected to each other by wires.

6.2.1 Ohm’s Law & the Simple Circuit

Ohm’s Law relates the difference in electrical potential (the voltage difference ∆V ) across a resistor (R measured in
ohms) to the current (I measured in amperes) that flows through it:

∆V = IR (6.7)

The unit of resistance is the ohm: 1ohm= 1Ω= 1V/A. Since electrical power is given by P = I∆V , we also have

P = I2 R (6.8)

as the rate at which electric energy is dissipated as thermal energy by a resistor. This relation also shows that one
ohm is equivalent to 1Ω= 1W/A2. (Algebra can also show that P = (∆V )2

/
R.)

The simplest circuit is a battery and a resistor connected in a single loop, as shown in the diagram below:

RE

a

b c

d

The voltage difference sustained by a battery (or generator, or other source of electrical energy) is referred to as the
electro-motive force, or emf for short, denoted by the symbol E . The value of the emf does not depend upon (or vary
with) what it is connected to in the circuit. What does vary, and depends upon the other elements in the circuit, is the
current that flows through the battery.

EXR 6.2.01 If the emf of the battery is E = 5.00V and
the resistance in the circuit is R = 220Ω, then find
(a) the current flowing around the circuit,
(b) the power dissipated by the resistor.

EXR 6.2.02 If the emf of the battery is E = 17.4V and
the resistance in the circuit is R = 421Ω, then find
(a) the current flowing around the circuit,
(b) the power dissipated by the resistor.

EXR 6.2.03 If the emf of the battery is E = 20.0V and
the current flowing around the circuit is I = 5.00A, then
find
(a) the value of the resistance,
(b) the power provided by the battery.

EXR 6.2.04 If the emf of the battery is E = 8.37V and
the current flowing around the circuit is I = 792mA, then
find
(a) the value of the resistance,

(b) the power provided by the battery.

EXR 6.2.05 If the emf of the battery is E = 8.00V and it
provides P = 16.0W of power, then find
(a) the current around the circuit,
(b) the value of the resistance.

EXR 6.2.06 If the emf of the power supply is E = 120V
and it provides P = 1.200kW of power, then find
(a) the current around the circuit,
(b) the value of the resistance.

EXR 6.2.07 If the resistance is R = 220Ω and a current
I = 33.2mA flows around the circuit, then find
(a) the emf of the battery,
(b) the power dissipated by the resistor.

EXR 6.2.08 If the resistance is R = 33.33Ω and a cur-
rent I = 3.60A flows around the circuit, then find
(a) the emf of the battery,
(b) the power dissipated by the resistor.
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6.2.2 Circuits with Resistors in Series

In series, the current through each element of the circuit (the battery, and each of the resistors) is the same. When
resistors are connected in series the equivalent resistance of the resulting circuit is given by

Req = R1 +R2 (6.9)

The current that flows through the battery, and each of the resistors, is given by I = E
/

Req.

R1

R2E

a

b c

d

EXERCISE 6.2.09 If the emf of the battery in the series
circuit is E = 5.00V and the resistances are R1 = 220Ω and
R2 = 150Ω, then find
(a) the current flowing around the circuit,
(b) the voltage difference across the small resistor,
(c) the power dissipated by the smaller resistor.

EXERCISE 6.2.10 If the emf of the battery in the series
circuit is E = 16.3V and the resistances are R1 = 53.0Ω
and R2 = 17.0Ω, then find
(a) the current flowing around the circuit,
(b) the voltage difference across the small resistor,
(c) the power dissipated by the smaller resistor.

EXERCISE 6.2.11 If the emf of the battery in the series
circuit is E = 70.0V, the resistance R1 = 98.0Ω, and the
current flowing around the circuit is I = 345mA, then find
the value of the unknown resistor.

EXERCISE 6.2.12 If the emf of the battery in the series
circuit is E = 120V, the resistance R1 = 34.3Ω, and the
current flowing around the circuit is I = 1.75A, then find
the value of the unknown resistor.

EXERCISE 6.2.13 If the emf of the battery in the series
circuit is E = 1.50V, the resistance R1 = 1.22Ω, and the
current flowing around the circuit is I = 551mA, then find
the value of the unknown resistor.
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6.2.3 Circuits with Resistors in Parallel

In parallel, the voltage across each element in the circuit (the battery, and each of the resistors) is the same. When
resistors are connected in parallel the equivalent resistance of the resulting circuit is given by

1
Req

= 1
R1

+ 1
R2

(6.10)

Your must remember to take the reciprocal of this!: Req = (1/Req)−1. The current that flows through the battery is
given by I = E

/
Req.

R1 R2E

a

b c d

ef

EXERCISE 6.2.14 If the emf of the battery in the paral-
lel circuit is E = 25.0V and the resistances are R1 = 11.0Ω
and R2 = 22.0Ω, then find
(a) the equivalent resistance of the circuit,
(b) the current out of the battery,
(c) the current through each resistor.

EXERCISE 6.2.15 If the emf of the battery in the paral-
lel circuit is E = 75.0V and the resistances are R1 = 150Ω
and R2 = 68.0Ω, then find

(a) the equivalent resistance of the circuit,
(b) the current out of the battery,
(c) the current through each resistor.

EXERCISE 6.2.16 If the emf of the battery in the par-
allel circuit is E = 1.50V and the resistances are R1 =
0.375Ω and R2 = 0.920Ω, then find
(a) the equivalent resistance of the circuit,
(b) the current out of the battery,
(c) the current through each resistor.
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6.3 Time-Varying Currents

When electric current flows charges move through each element of the circuit. In the context of your Electrotherapy
course a portion of the patient’s body is an element of the circuit. In the human body it is a mixture of charged
molecules, both positive and negative, that move when electric current flows in the body. With the boundaries of cells,
organs, and ultimately the skin, electric current flowing in the human body has nowhere to go. Thus a current that
flows at a constant rate through the human body will separate the charged molecules – with the positively charged
molecules migrating to one side and the negatively charged molecules migrating to the other.

One method to avoid separating the different charges, while still permitting current, is alternate the direction of
current flow. (Think of this like when you rub your hands together to produce heat by friction, and you alternate the
direction of your hand’s motion.)

Another method is to periodically decrease the applied voltage to zero. This gives the partially separated charges
time to move back together and recombine into its original neutral mixture. That process is called relaxation.

Although the current may vary with time, all the relations between current, voltage and resistance still apply,
since they apply at each instant in time. The same is true of the relation between current, voltage and power. So these
relations are true at each instant in time:

∆V = I ×R (6.11)

P = I ×∆V (6.12)

What is complicated now are the relations between current and charge transported, and between power and energy
transferred or transformed. These totals will now depend upon exactly how the current varies with time, and will often
be expressed as averages over intervals of time that are large in comparison to the changes.

6.3.1 Alternating Current

One of the fundamental types of time-varying current is referred to as Alternating Current, which is abbreviated
“AC”. The current (and voltage) vary sinusoidally. (This is the type of current provided by electrical wall outlets.) If
the current varies as the sine-function, then (as an example) the instantaneous power being dissipated by a resistor
(P = RI2) will vary as the square of the sine-function. This is graphed below:

t(s)

I(A)

t(s)

P(W)

The rate of energy dissipation does not depend upon the direction of charge motion, only its rate. So even as the
current reverses direction – in the graph, where the current takes negative values over half of each cycle – the power
is same as in the first half of the cycle. Calling the amplitude of the current oscillation Ipeak, the maximum value of
the power is Ppeak = R (Ipeak)2.

Averaged over many cycles the average power being dissipated is half of the peak value:

Pavg = 1
2 Ppeak (6.13)

This is defined by the fact that the total energy ∆E delivered by the alternating current will be ∆E = Pavg∆t, where ∆t
is the total time that the current is oscillating. (This can be proved rigorously using calculus.)

This relation between the peak and average power is used to define a measure of the “average current”. (Strictly
speaking, since the current alternates direction, the current averages out to zero. The “average” being defined here is
more like a measure of the amplitude of the oscillating current.) Defining Irms the root mean square (RMS) average of
the current through Pavg = R (Irms)2, we obtain

Pavg = 1
2 Ppeak (6.14)

R (Irms)2 = R (Ipeak)2 (6.15)

Irms = 1p
2

Ipeak (6.16)
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Since 1p
2
≈ 0.7 the RMS (average) value of the current is about 70% of the peak value. It is important to have these

two measures of the alternating current because: (1) the average of the power relates to the target energy we seek to
deliver; but (2) the peak current is important to control for safety reasons.

Through Ohm’s Law the RMS (average) value of the oscillating voltage difference that drives the oscillating current
is similarly defined in relation to its peak value:

∆Vrms = 1p
2
∆Vpeak (6.17)

(If you are aware of it, the “120 V” of the electrical supply from wall plugs is the RMS value of the oscillating voltage.)
When oscillating voltages and currents are measured using “multimeters” it is usually the RMS values being reported.
These relations hold:

∆V = I ×R (6.18)

∆Vpeak = Ipeak ×R (6.19)

∆Vrms = Irms ×R (6.20)

This first is true at each instant in time. The second relates the values at the instant the current is at its peak. The
third relates the values when averaged over an interval of time that is long in comparison to the period of oscillation.

Frequency Dependence

The expressions for Ohm’s Law (∆V = I R) and the instantaneous power (P = I∆V ) do not depend upon the frequency of
the current’s alternation. What does vary with frequency, usually, is the resistance of the material, typically increasing
with frequency – although the truth is quite complicated, and there are many exceptions. In practice, the frequency
will usually be prescribed and the resistance under those conditions either known, or easily determined.

The resistance may vary with frequency, but the peak voltages and currents are independent of the frequency. Just
remember that, as we saw for waves, amplitude and frequency are independent of each other.
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EXR 6.3.01 If an alternating current Irms = 13.0mA
flows through a 220Ω resistor, find
(a) the RMS voltage being applied,
(b) the peak current flowing through the resistor, and
(c) the average power being dissipated.

EXR 6.3.02 If an alternating current Irms = 15.0A flows
through a 8.00Ω resistor, find
(a) the RMS voltage being applied,
(b) the peak current flowing through the resistor, and
(c) the average power being dissipated.

EXR 6.3.03 If an alternating voltage difference ∆Vrms =
120V is applied across a 68.0Ω resistor, find
(a) the RMS current flowing through the resistor,
(b) the peak current flowing through the resistor, and
(c) the average power being dissipated.

EXR 6.3.04 If an alternating voltage difference ∆Vrms =
9.00V is applied across a 725mΩ resistor, find

(a) the RMS current flowing through the resistor,
(b) the peak current flowing through the resistor, and
(c) the average power being dissipated.

EXR 6.3.05 If an alternating voltage difference ∆Vrms =
75.0V dissipates 210W (average) in a resistor, find
(a) the RMS current flowing through the resistor, and
(b) the value of the resistance.

EXR 6.3.06 If an alternating voltage difference ∆Vrms =
120V dissipates 15.3W (average) in a resistor, find
(a) the RMS current flowing through the resistor, and
(b) the value of the resistance.

EXR 6.3.07 If an alternating voltage difference ∆Vrms =
120V is applied across a 22.2Ω resistor, find the time re-
quired to dissipate 7.31 kJ.

EXR 6.3.08 If an alternating voltage difference ∆Vrms =
5.00V is applied across a 417mΩ resistor, find the time re-
quired to dissipate 29.2 kJ.
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